
FeIDo: Recoverable FIDO2 Tokens Using Electronic IDs
Solving Token Loss and User Data Privacy via TEE-protected Attribute-based Credentials

Fabian Schwarz∗
CISPA Helmholtz Center for

Information Security
Saarbrücken, Germany

schwarz.fabianfrank@gmail.com

Khue Do∗
CISPA Helmholtz Center for

Information Security
Saarbrücken, Germany
khue.do@cispa.de

Gunnar Heide
CISPA Helmholtz Center for

Information Security
Saarbrücken, Germany
gunnar.heide@cispa.de

Lucjan Hanzlik
CISPA Helmholtz Center for

Information Security
Saarbrücken, Germany

hanzlik@cispa.de

Christian Rossow
CISPA Helmholtz Center for

Information Security
Saarbrücken, Germany

rossow@cispa.de

ABSTRACT
Two-factor authentication (2FA) mitigates the security risks of pass-
words as sole authentication factor. FIDO2—the de facto standard
for interoperable web authentication—leverages strong, hardware-
backed second factors. However, practical challenges hinder wider
FIDO2 user adoption for 2FA tokens, such as the extra costs ($20-$30
per token) or the risk of inaccessible accounts upon token loss/theft.

To tackle the above challenges, we propose FeIDo, a virtual
FIDO2 token that combines the security and interoperability of
FIDO2 2FA authentication with the prevalence of existing eIDs (e.g.,
electronic passports). Our core idea is to derive FIDO2 credentials
based on personally-identifying and verifiable attributes—name,
date of birth, and place of birth—that we obtain from the user’s
eID. As these attributes do not change even for refreshed eID doc-
uments, the credentials “survive” token loss. Even though FeIDo
operates on privacy-critical data, all personal data and resulting
FIDO2 credentials stay unlinkable, are never leaked to third parties,
and are securely managed in attestable hardware containers (e.g.,
SGX enclaves). In contrast to existing FIDO2 tokens, FeIDo can also
derive and share verifiable meta attributes (anonymous credentials)
with web services. These enable verified but pseudonymous user
checks, e.g., for age verification (e.g., “is adult”).

CCS CONCEPTS
• Security and privacy→Multi-factor authentication; Trusted
computing; Web protocol security.

KEYWORDS
FIDO2; eID; token loss; authentication; SGX; anonymous credentials

1 INTRODUCTION
Passwords still represent the most popular type of credentials in
web authentication—despite their widely-studied deficiencies [27],
such as the risks of password database breaches [49], shoulder surf-
ing [25], phishing [45], or low entropy passwords [22]. To mitigate
these issues, a growing number of web services offer two-factor au-
thentication (2FA) to increase authentication security. 2FA schemes
usually ask the user for some proof of possession, such as one-time
∗We thank Saarland University for supporting Fabian Schwarz and Khue Do.

passwords (OTP) sent to the user’s mobile phone. However, com-
mon second factors, e.g., SMS OTP [38] or OTP apps, are vulnerable
to client-side and server-side leaks of the OTPs and their secret
seeds. Furthermore, they require interceptable user input for enter-
ing the OTPs, and users must manage them for each service and
client device. To enable stronger 2FA, the FIDO2 standard defines
how to use protected hardware tokens (also called authenticators),
especially for web authentication [41]. FIDO2 follows a challenge-
response protocol where for each origin (e.g., web service), the
hardware token securely generates and stores a public key pair.
Upon authentication, the FIDO2 client first verifies the server ori-
gin, after which the token digitally signs a server-chosen challenge
using its private key, which is never accessible outside the token.

Given the above security benefits, FIDO2 has become the de
facto standard for strong, interoperable authentication supported by
many popular services. However, while FIDO2 support is increasing,
the actual user adoption—i.e., users leveraging FIDO2-compatible
hardware tokens—lags behind. Two fundamental downsides of hard-
ware tokens hinder a wider adoption. (1) Costs: Users are reluctant
to buy dedicated hardware tokens as they incur extra costs. Even
basic FIDO2 tokens cost around $20-$30, which is a non-negligible
investment. (2) Token loss: Hardware tokens are subject to loss
or theft. Users might no longer be able to log in, as token-based
credentials cannot be backed up. Indeed, token vendors recom-
mend registering at least two different tokens to the same user
account [54]—further increasing the costs and hampering the us-
ability of hardware tokens overall. Alternatively, users must fall
back to less secure alternative authentication or account recovery
schemes (e.g., recovery codes) if provided by the web service [52].

The barrier of additional costs has motivated vendors to offer
FIDO2-compatible “virtual” tokens. These tokens do not require ex-
tra hardware but root their signing security in trusted hardware of
client devices. For instance, Android and Windows 10 have FIDO2-
certified authenticators: Android’s Keystore backed by ARM Trust-
Zone [6], or theWindows Hello authentication service relying on
the Trusted Platform Module (TPM). On the one hand, this allows
virtual tokens to securely store authentication-relevant secrets in
trusted hardware so attackers cannot steal them. On the other, this
advantage comes at the cost that users can still not back up their

1

https://orcid.org/0000-0002-8549-3881

Fabian Schwarz, Khue Do, Gunnar Heide, Lucjan Hanzlik, & Christian Rossow

authentication secrets. Furthermore, not all user devices offer the
trusted hardware (e.g., TPM) required by the virtual FIDO2 tokens.

In this paper, we propose FeIDo, a fully FIDO2-compliant virtual
token that tackles the challenges of costs and token loss. FeIDo is
mainly designed for—but not limited to—providing private users
with a strong second factor for two-factor web authentication.
FeIDo is a virtual FIDO2 token utilizing electronic identifications
(eIDs) such as electronic passports or ID cards. FeIDo uses the
communication interface of eIDs as standardized by the Interna-
tional Civil Aviation Organization (ICAO) to extract personal data
from the documents. eIDs can prove the authenticity of personal
attributes, such as the user’s name, place of birth, and date of birth.
These personal attributes then form the basis for FeIDo’s user au-
thentication. eIDs nicely address the above authentication chal-
lenges in FIDO2: (1) No extra costs: eIDs obsolete the need for
dedicated security tokens for eID holders. Over 1 billion citizen
already own electronic IDs or passports [3, 5] (cf. § 2.2). Our setup
thus does not impose additional hardware requirements—users can
leverage eID readers such as NFC readers that ship with off-the-
shelf phones (cf. § 2.2). (2) Token recovery: The authentication in
FeIDo is not bound to a particular eID but only to its verifiable per-
sonal attributes. These attributes do not change even if a lost/stolen
eID is replaced by a new one, which enables direct credential and
thus account recovery.

While personal attributes could be directly shared with and veri-
fied by authenticating services, most attributes stored on eIDs are
privacy-sensitive (e.g., name, place of living) and not required for
authentication. There are many cases in which users wish to re-
main pseudonymous, such as in adult websites, forums (e.g., health
forums), learning platforms for kids, or even social media. There-
fore, we design a FIDO2-compatible attribute-based authentication
scheme in which third parties do not learn personal details and
credentials are unlinkable. Our core idea is to use trusted remote
credential services that validate and vet—but never share or leak—
the personal data. The credential services feed the personal user
data as input to a key derivation function to derive attribute-based
credentials. The resulting credentials depend on personal attributes
(name, date of birth, and place of birth) and a secret chosen by the
credential services but are unlinkable. To guarantee that the creden-
tial services can be trusted to protect personal data against third
parties (including the hosting providers), they execute in attestable
Trusted Execution Environments (TEEs). Users can remotely at-
test the protection and authenticity of a given credential service,
verifying its validity before sharing their personal data.

In addition, our design comes with an attractive extension that is
not in the scope of existing FIDO2 tokens. FeIDo enables anonymous
credentials that allow web service providers to learn pseudonymous
meta user attributes and verify their authenticity. For example,
adult websites may have to ensure that their users are of legal
age, or governmental websites may want to restrict services to
residents. FeIDo’s credential service derives such meta attributes
(e.g., “is adult”) from the raw eID data (e.g., dob = May 14, 1981) in
an attestable way and, at the same time, guarantees that the raw
user data is never exposed outside of the credential service’s TEE.

Our design on the user side is agnostic to the choice of a concrete
OS, hardware, and eID. Users can use standard interfaces such as
NFC to read personal data from their eID and prove its authenticity

to a credential service (cf. § 2.2). The credential service requires a
TEE providing remote attestation, data encryption, and integrity
checks, e.g., as available on public cloud platforms—and one in-
stance can easily handle tens of thousands of users. FeIDo clients
perform remote attestation before forwarding data to the credential
service—notablywithout requiring TEE support themselves. Clients
also do not need to back up their credentials to withstand device
loss, as credentials are always freshly derived from eID data. FIDO2-
capable web services can readily use FeIDo-backed credentials, and
can leverage anonymous credentials using FIDO2 extension fields.
In our evaluation, we instantiated this general design in a con-
crete setting without losing generality. We securely implement an
open source1 prototype that consists of an Android app reading
personal data from an ePassport and a TEE-protected credential
service receiving and vetting this personal data to derive signing
keys for authentication. We evaluate our prototype by measuring
the FIDO2 authentication duration on the well-known webauthn.io
test page [37]. We show that FeIDo is comparable in efficiency to
existing FIDO2 hardware tokens while tackling their shortcomings.
In summary, we make the following contributions:

• We design FeIDo, a virtual FIDO2 token that enables ac-
count recovery on a token loss and is readily available
without extra costs to the large population of users owning
a compliant eID such as ICAO-standardized ePassports.

• As the crucial enabler for account recovery, we present the
concept of attribute-based FIDO2 credentials, protecting
personal data within an attestable TEE.

• FeIDo enables anonymous credentials (e.g., age group) that
web providers can verify without having access to privacy-
infringing raw user attributes (e.g., date of birth).

• We analyze the security and prototype1 of FeIDo.

2 BACKGROUND AND RELATEDWORK
We first provide the reader with background information on FIDO2
and electronic IDs and describe their current shortcomings.

2.1 FIDO2
The FIDO2 standard (and its predecessor U2F) describes how to use
hardware tokens for authentication. Such tokens rely on public-key
cryptography (PKC). To form authentication credentials, the client
creates a dedicated key pair per service as credentials with the
help of a hardware token (“authenticator”). The hardware token
generates and stores these key pairs. To register their credentials
with an account, users send their service-specific public key to the
authenticating server (“relying party”). The corresponding private
key never leaves the hardware token, even if the user’s system
(“agent”) is compromised. To authenticate a user, client and server
follow a challenge-response protocol, as shown in Figure 1 for a web
authentication setting. The client signs a server-chosen challenge
using their authenticator (token). To this end, the agent verifies
the origin (i.e., domain and port number) of the relying party (web
service). The authenticator then uses the origin-specific private
key to sign the challenge. The relying party uses the public key
associated with the authenticating account to verify the signed

1Prototype available at: https://github.com/feido-token

2

https://github.com/feido-token

FeIDo: Recoverable FIDO2 Tokens Using Electronic IDs

Relying Party  
(web service)

Agent 
(browser)

Authenticator
(hw token) Client Device

challenge{challenge, origin}

signature(c) s

c

s

(WebAuthn)(CTAP2)

Figure 1: Simplified flow of a FIDO2 web authentication.

client response. In essence, possession of the private key serves as
proof for authentication.

This authentication workflow is realized in two core FIDO2 com-
ponents, WebAuthn and CTAP2. WebAuthn [41] standardizes the
interface of PKC-based authentication on the web. Basically, Web-
Authn defines the communication between the client device and the
web server, including the challenge-response protocol mentioned
above. The standard defines an API for the agents that defines how
to generate fresh credentials (MakeCredential) and get the response
to the relying party’s challenge (GetAssertion). The Client to Authen-
ticator Protocol (CTAP2) complements WebAuthn. CTAP2 defines
the communication between the authenticator and the agent.

The FIDO2 standard supports using authenticators in several
private and enterprise use cases for secure authentication [10]. In
this work, we set the prime focus on FIDO2 authenticators as secure
second factors for web authentication by private users. However,
we will later explain how our proposed scheme can be used as a
single factor (§ 7.1) or in enterprise-focused use cases (§ 7.2).

2.1.1 Open Challenges for FIDO2. FIDO2mitigates password crack-
ing via database breaches, phishing attacks, and secure storage of
credentials. FIDO2 also makes users unlinkable across services, as
the authenticator generates a fresh public key for every relying
party. However, FIDO2 introduces a new set of problems.

Costs: The extra costs for dedicated hardware are one of the
main obstacles to scaling FIDO2 to the masses. Even the most
basic hardware-based authenticators cost around 20-30 USD, a non-
negligible expense for many. To tackle this challenge, vendors offer
FIDO2-compliant “virtual” authenticators that use trusted comput-
ing features (e.g., TPM or secure enclaves) of the user’s hardware.
Google introduced an API to Android OS that allows the user to
store FIDO2 keys inside the ARM TrustZone-backed Android Key-
store [6]. To use this virtual FIDO2 authenticator, the user relies
on the authentication mechanism used to access the phone, i.e.,
a PIN code or biometric features. The Windows Hello authenti-
cation service provides a similar solution based on TPMs. FIDO2
is also available for macOS and iOS using Apple’s secure enclave
for key management and FaceID and TouchID as user access con-
trol [14]. Chakraborty and Bugiel proposed an authenticator called
simFIDO [15] based on simTPM [16]. They use a cheap SIM card
running the Java Card OS as TPM to implement a FIDO2-compliant
authenticator, mitigating the cost issue. On the downside, this solu-
tion requires mobile service providers to support and install extra
applications (simFIDO and simTPM) on their SIM cards. While
all these approaches mitigate the cost issue, they require special
trusted computing features on the client side, which are not present

in many consumer devices. Furthermore, unless users choose al-
ternative authentication methods, they will lose access to their
credentials if the device gets lost or stolen, as discussed next.

Token Loss: Another open challenge of FIDO2 is to provide a
cost-efficient and practical solution for account recovery in case the
authenticator is lost. In principle, as the private credential keys are
protected on the authenticator and can not be extracted, losing an
authenticator implies losing access to all authenticator-protected
accounts. The naive yet recommended solution [52, 53] is register-
ing an additional authenticator to the same account as a backup,
doubling the costs. Alternatively, if supported by the relying party,
additional authentication factors or service-specific recovery strate-
gies, such as SMS OTP or recovery codes, can be used, which,
however, degrade security and face several drawbacks [35, 38].

2.2 eIDs for Authentication
This paper proposes a FIDO2-compatible virtual authenticator that
uses electronic IDs (eIDs). eIDs and their user-based associations
are inherently well-suited for authentication. A combination of
personal data such as the full name, day of birth, and place of
birth is reasonably specific to be used in strong authentication
mechanisms. For many eIDs, such personal data can be (i) securely
read electronically, (ii) verified to stem from a valid eID, and (iii)
accompanied by freshness guarantees that show if a user currently
possesses the eID. eIDs typically include RFID chips with NFC
interfaces, for which respective NFC support is widely available on
consumer phones, including all iPhones released since 2016 (iOS ≥
13.2) [32, 40] and most Android phones since ’15, e.g., from LG and
HTC, all Samsung phones since ’15, and all Huawei phones since
’17 [32, 39]. To prevent eID spoofing and ensure data authenticity,
the personal data is signed by a trusted issuing authority, e.g., a state.
Furthermore, eIDs usually physically protect memory for secret
storage and prevent unauthorized access and detect eID cloning.

The eID interfaces are either standardized (in the case of elec-
tronic passports) or subject to the issuing country (in the case of
national IDs). Having said this, an ever-increasing number of coun-
tries deploy national eIDs or ePassports that provide the above ca-
pabilities. For example, every eID following the ICAO standard [48]
for electronic machine-readable travel documents (eMRTDs) satis-
fies these requirements. As of mid-2019, over 150 countries issued
ePassports [5], including the top 10 most populated countries con-
stituting more than half of the earth’s population. Moreover, also
many national IDs implement this standard. For example, start-
ing from August 2021, all European Union member states are re-
quired to issue ICAO-compliant national ID cards [1]. Compliant
IDs are also provided by Panama, Uruguay, Algeria, Saudi Arabia,
Ukraine, Kyrgyzstan, and mainland China ID cards for Hong Kong,
Macau, and Taiwan [2]. Several other national eIDs implement sim-
ilar interfaces, often defined in regional or country-specific stan-
dards [3]. Taking into account the accessibility of ICAO-compliant
eIDs throughout the paper, without losing generality, we assume
the eID is an eMRTD. This way, we can explain the general concept
by the example of concrete communication protocols.

An eMRTD interacts with a client through an NFC reader via
well-defined protocols. Three of these protocols [47], which map to
the eID capabilities mentioned before, are relevant in our context:

3

Fabian Schwarz, Khue Do, Gunnar Heide, Lucjan Hanzlik, & Christian Rossow

(i) PACE: Password Authenticated Connection Establishment
(PACE) is a password-based access protocol to protect the commu-
nication between an eMRTD and a reader. PACE assures that the
reader is authorized to access certain data groups on the eID [7, 13].
The chip asks the reader for a (static) password as access control, typ-
ically printed on the eID. The user provides this eID-specific secret
to the reader. This password can optionally be cached in software
to ease future accesses. The chip and reader derive a Diffie-Hellman
session key from this weak password to grant/obtain read access
and to establish a secure channel for subsequent data exchange.

(ii) PA: During Passive Authentication (PA), the reader verifies
the data authenticity of the retrieved personal data. Next to raw
data, an eMRTD chip can also send a document security object
(DSO), i.e., signed hash values of the personal data stored on the
eID. The DSO is also signed and can be verified, ensuring that only a
trusted eID authority can create valid DSOs. Readers can therefore
validate the eMRTD data by comparing data hashes.

(iii) CA:While PA ensures data authenticity, Chip Authentica-
tion (CA) prevents data and eID cloning. When initiating CA, the
chip shares a static public key with the reader. By checking this
public against the previously hash-protected eID data received via
PACE, one can verify the binding between the present eID and user
data. In addition, a successful CA channel establishment proves that
the eID is in possession of the unclonable CA private key and there-
fore authentic. After the reader sends an ephemeral public key to
the chip, both the chip and the reader derive a shared key between
the two parties from these keys—technically, a Diffie-Hellman key
exchange. They later use this shared key to derive session keys
(encryption key and MAC key) for secure communication.

2.2.1 Risks of eID-Based Authentication. The previous discussion
showed that eIDs provide well-defined and easy-to-access
interfaces to extract verifiable personal data securely. However,
while exposing eID data to third parties for authentication is
technically possible, it infringes a user’s privacy as the personal
data stored on eIDs is highly privacy-sensitive (e.g., date of birth,
place of living). The data goes much beyond what is necessary for
authentication purposes. Furthermore, there are many use cases in
which users wish to remain pseudonymous (e.g., health forums), as
described in § 1. Therefore, we see the potential for an eID-based
authentication scheme that can be based on an eID’s verified user
data without revealing any user data to the authenticating service.

State authorities already identified authentication as another
eID use case. Some proposals even make eID-based identification
compatible across countries, such as eIDAS in the EU [8, 28, 43].
However, they either infringe privacy per the above argument or
rely on a country-specific pseudonym functionality whose authen-
tication credentials are invalidated every time an eID is renewed.

3 FEIDO: DESIGN GOALS AND THREATS
In order to overcome the roadblocks of FIDO2 adoption, this work
aims to design a new authenticator, called FeIDo. In the following,
we present FeIDo’s goals and threat model.

3.1 Goals and Requirements
The goal of FeIDo is to form a FIDO2 authenticator for secure web
authentication, which overcomes current limitations of hardware

(a) FeIDo Authenticator

Relying Party 
(web service)

Agent 
(browser)

Middleware
Credential Service  

(TEE)eID

FIDO2 
(WebAuthn)

(c) virtual authenticator

(b) dedicated HW 
authenticator

Client Device

Figure 2: Comparison between (a) FeIDo and (b) existing hard-
ware and (c) virtual FIDO2 authenticators.

and virtual authenticators. We design FeIDo to combine concepts
of virtual FIDO2 authenticators with that of smartcards owned by
billions [3] of citizens: eIDs such as electronic passports or ID cards.
To guide the design of FeIDo, we have defined six requirements:
R1 Compatibility FeIDo must be compatible with the standard

FIDO2 protocols for authenticator-based web authentica-
tion.

R2 Economic FeIDomust build on commodity hardware and eIDs
that are readily available for eID holderswithout extra costs.

R3 Account Recovery The user must be able to recover access to
their accounts on a FeIDo authenticator losswithout having
to register additional authenticators.

R4 User Privacy Third parties (incl. relying party, FeIDo
provider) must neither be able to access personal user data
directly nor link personal data to FeIDo’s web credentials.

R5 Platform Independence FeIDo must not bind users to a spe-
cific software or hardware vendor (e.g., OS, client device).

R6 Anonymous Credentials The relying parties should be able
to learn authenticated yet pseudonymous meta information
on a user for verification, but without violating user privacy.

FeIDo provides a strong FIDO2 second factor for private users’
web authentication (2FA). However, FeIDo is not limited to this
application and can support additional FIDO2 use cases, such as
passwordless and enterprise schemes discussed in § 7.1 and § 7.2.

3.2 Threat Model
We follow the threat model of FIDO2 web authentication [9] and
extend it to include FeIDo-specific components and entities. Analo-
gous to the FIDO2 setting, a trusted user wants to register and log
into a web service via their browser using the FIDO2 protocols and
the FeIDo authenticator. We trust the web service and assume a
secure, authenticated connection between the browser and service.
From a FIDO2 perspective, the user’s browser forms the agent while
the web service forms the relying party. We assume the agent and
client device to be trusted—following the trust setting of token-
based authentication. While we could relax this assumption using
TEEs on client devices, we also want to support userswithout access
to special features such as Android’s protected confirmation [31].

Figure 2 shows that FeIDo adds new components not present in
existing authenticators: a user eID, a remote credential service, and a
client-located middleware. We consider several attacks against each

4

FeIDo: Recoverable FIDO2 Tokens Using Electronic IDs

of the three components and active and passive network attackers
targeting the communication between them.We trust the individual
components in the followingways: eID: Similar to hardware authen-
ticators, we trust the eID’s hardware-based protections and security
protocols (§ 2.2) and the issuing document authority such that we
can verify if a user’s eID is genuine. That way, FeIDo can rule out at-
tackers trying to spoof or clone arbitrary eIDs that impersonate oth-
ers. We assume an attacker trying to steal and abuse the user eID for
account hijacking (see § 5.3). Finally, we discuss the security of eIDs
and explain the impact of malicious authorities on FeIDo in § 5.2.2.
Credential Service: Service instances run on untrusted remote
systems such as public cloud platforms. We assume that remote at-
tackers, including the hosting providers and platforms, try to manip-
ulate, steal, or clone credential services. Therefore, we operate each
service in a secure, hardware-based container [44] protecting them
against the above threats. Furthermore, we assume the containers
support remote attestation to rule out attacks that impersonate the
service. Client Middleware:We do not trust the middleware to
perform any eID validation but merely use it as a proxy between
the eID and the credential service. Following our assumption that
we trust the client device, the middleware shares eID data only with
a valid, protected credential service, verified via remote attestation.

We assume FeIDo’s components to be free of exploitable vulner-
abilities. To prevent physical and micro-architectural side-channels,
we rely on existing smartcard features such as memory and
constant-time cryptographic operations, similar to existing FIDO2
authenticators. We assume orthogonal defenses for the hardware-
based containers protecting the credential services [11, 23, 46].

4 FEIDO: CONCEPTS AND DESIGN
In the following sections, we explain the concepts and design of the
FeIDo authenticator, including its optional support for anonymous
credentials. The section then concludes with a deployment analysis.
We refer to FeIDo’s design requirements (§ 3.1) in relevant passages.

4.1 Big Picture
FeIDo’s core idea is to derive FIDO2 web credentials based on a
user’s unique, personal attributes that FeIDo securely retrieves
from the user’s eID (R1). At its core, FeIDo foresees hardware-
protected and attestable credential services that convert privacy-
critical personal attributes—name, place of birth, and day of birth—
to pseudonymous authentication credentials. The credential service
acts as a sort of “pseudonymizing proxy” that ensures unlinkability
and preserves user privacy against both the authenticating services
and the untrusted credential service hosters. FeIDo combines the
advantages of token-based authentication (strong security and pri-
vacy) and eID-based authentication (easy token recovery, no extra
costs), tackling the open challenges of both schemes (cf. § 2).

In FIDO2 terminology, FeIDo forms a virtual FIDO2 authenti-
cator that combines TEE-protected credential services with user-
owned eIDs. The credential service derives attribute-based creden-
tials that are user-specific yet unlinkable (R4) and depend on a
user’s attributes rather than a specific physical device or eID. These
attribute-based credentials have clear advantages when it comes to
account recovery because any user eID carrying the same personal
attributes can serve as a replacement eID (R2+3). In order to retain

Table 1: Feature comparison between FeIDo, existing hard-
ware and virtual FIDO2 authenticators, and eIDs schemes.

FeIDo HW Aut Virt. Aut eID

R1 - FIDO2 Compatible ✔ ✔ ✔ ✕

R2 - No Extra Costs ✔ ✕ ✔ ✔

R2 - Widely Deployed ✔ ✕ ✔ ✔

R3 - Device Loss Rcvry ✔ ✔ ✕ ✔

R3 - Token Loss Rcvry ✔ (✔) (✔) ✔

R4 - User Privacy ✔ ✔ ✔ ✕

R5 - Cross Platform ✔ ✔ ✕ ✔

R6 - Anon. Creds ✔ ✕ ✕ ✕

user privacy and credential security, each credential service instance
is protected in a remotely verifiable hardware TEE and prevents
attribute and credential leakage to third parties (R4). In addition, the
service supports so-called anonymous credentials (R6), an extension
that allows a relying party to learn meta user attributes, e.g., for
age verification, without violating a user’s privacy (see § 4.4)—a
feature not present in current eIDs and authenticators. FeIDo’s
service-based design requires neither secrets nor trusted hardware
features on client devices, which benefits account recovery, user
costs, and cross-platform support (R2+3, R5).

Figure 2 shows how FeIDo forms the virtual FIDO2 authenti-
cator by combining an off-the-shelf user eID with two new soft-
ware components: a TEE-protected remote credential service and
a client-located middleware. The client middleware is a secretless
component that interfaces the FeIDo authenticator with the FIDO2
agent (typically part of the browser) and securely mediates internal
communication between the eID and credential service (see § 4.5).

4.2 Comparison to Existing Authenticators
FeIDo combines concepts of virtual FIDO2 authenticators with eIDs
to overcome the drawbacks of existing hardware and virtual au-
thenticators and enable new features, as shown in Table 1. FeIDo
removes the need (and costs) for buying extra hardware authentica-
tors dedicated “only” to authentication purposes. Instead, FeIDo can
leverage the wide deployment of eIDs across billions of citizens and
their compatibility with off-the-shelf phones (see § 2.2). In contrast,
hardware authenticators have only limited user adoption due to
their risk of token loss and their incurring extra costs (§ 2.1.1). In
contrast to virtual authenticators, FeIDo relies on secure hardware
containers on the credential service side rather than client devices.
The credential services can use TEEs widely available on public
cloud platforms (e.g., Intel SGX, AMD SEV-SNP [44]) and are thus
easily shareable by thousands of users with negligible costs, similar
to Tor nodes [24]. FeIDo poses no requirements on client devices
and uses the client middleware only as a secretless proxy between
eID and credential service. Therefore, similar to hardware authen-
ticators, FeIDo is independent of the specific client device, which
enables easy porting of the middleware to other client platforms.
Furthermore, a client device loss does not affect FeIDo or hardware
authenticators, while virtual authenticators and their credentials
are tightly bound to a specific client platform and device.

5

Fabian Schwarz, Khue Do, Gunnar Heide, Lucjan Hanzlik, & Christian Rossow

FeIDo retains account access on a token loss because any re-
placement eID carrying the same user attributes enables access to
a user’s credentials and thus accounts (§ 4.3). Therefore, in con-
trast to existing authenticators, FeIDo can recover from a token
loss without requiring backup tokens (cf. hardware authenticators),
insecure vendor-specific cloud backups of token secrets (cf. some
virtual authenticators), or insecure service-specific recovery meth-
ods (e.g., recovery codes). A potential downside can be a longer
renewal time for eIDs (a few weeks) compared to buying a new
hardware authenticator if no replacement eID is available (e.g.,
driver’s license, ePassport). Finally, FeIDo enables anonymous cre-
dentials during the authentication process, e.g., for pseudonymous
age verification—in contrast to existing FIDO2 authenticators.

Finally, when comparing FeIDo to naïve eID-based authenti-
cation without the proposed middleware and credential services
(Table 1, last column), we see that they are not FIDO2 compatible
and fully violate a user’s privacy by exposing personal data to the
authenticating services, as described in § 2.2.1. Furthermore, they
do not support anonymous credentials.

4.3 Attribute-based Credentials
FeIDo’s credential service performs the actual FIDO2 authenticator
operations for web registration and login, i.e., credential creation
and assertion [41]. We have designed the resulting virtual token as
a user-independent network service. This design mitigates the risk
that users can lose secrets. Instead, the credentials become remotely
usable for users from any device (R2+3, R5). The credential service
keeps no persistent user or credential state. Instead, to distinguish
users and bind their FIDO2 credentials exclusively to them, the
credential service dynamically derives a user’s credentials using a
key derivation function (KDF). The unique, personal attributes from
the eID are fed to the KDF, resulting in attribute-based credentials.

4.3.1 Reading eID User Attributes. When FeIDo authenticates a
user, the credential service first securely reads a user’s personal
attributes from their eID. The service cooperates with the client
middleware on each authentication request to remotely access the
user’s eID. By explicitly requiring a user’s eID on each request, the
credential service can verify the freshness of the attributes and eID
and thus guarantee that credentials are only derived if the eID is
valid and present. Otherwise, attackers could provide a different
user’s data for an impersonation attack or use bogus eID clones. To
enable secure eID access and verification, FeIDo requires eIDs to
provide support for (1) establishing a secure end-to-end connection
to them and (2) verifying the authenticity and integrity of the eID
and its stored user attributes. In our eMRTD-compatible prototype,
the credential service retrieves user attributes—tunneled via the
client middleware—leveraging the eID protocols described in § 2.2.

4.3.2 Credential Derivation. The credential service now feeds the
personal user attributes into a KDF to derive user-specific creden-
tials. The KDF input binds the resulting credentials to (a) the eID
owner and (b) the relying party. The credential service receives
the relying party’s effective domain (or origin) rp𝑖𝑑 from the client
middleware. For the user binding, the credential service chooses
a unique set of attributes from the personal user data included in
eIDs: the user’s full name (𝑛𝑎𝑚𝑒), date of birth (𝑑𝑜𝑏) and place of

birth (𝑝𝑜𝑏), and state (𝑠𝑡𝑎𝑡𝑒) issuing the eIDs. For now, we assume
that the above combination of user attributes (i) remains constant
for a given user and (ii) provides sufficient uniqueness guarantees.
We discuss these properties in more detail in § 4.6.2 and § 5.2.3, and
explain the prevention of cross-state attacks in § 5.2.2.

To guarantee the security of the attribute-based user credentials,
the KDF input additionally needs to include a secret 𝑠kdf that is
only accessible by a genuine, hardware-protected credential service.
Lacking this secret, attackers cannot recalculate credentials purely
based on the correct personal user attributes and relying party
information (rp𝑖𝑑). Using the above inputs, we can now derive the
credentials using a KDF. The credential service leverages an HMAC
as the KDF, uses 𝑠kdf as the HMAC’s key [34], and all user attributes
and relying party information as HMAC inputs. More formally:

ℎ𝑐𝑟𝑒𝑑 = HMAC(𝑠kdf, rp𝑖𝑑 |𝑛𝑎𝑚𝑒 |𝑑𝑜𝑏 |𝑝𝑜𝑏 |𝑠𝑡𝑎𝑡𝑒) (1)

where ”|” is the byte string concatenation. The credential service
interprets the resulting hash ℎ𝑐𝑟𝑒𝑑 as the private key skcred of the
user’s WebAuthn credential according to the specified signature
algorithm and then calculates the respective public key pkcred.

This reproducible public key pair can now be used in the FIDO2-
typical way: During a credential registration (MakeCredential), the
credential service includes the public key pkcred in the response.
For a login (GetAssertion), the credential service uses the private key
skcred to sign the relying party’s assertion challenge [41]. Personal
data such as user attributes are not transmitted to the relying party.
Furthermore, the credential service does neither persistently store
user data nor credentials but instead deletes them at this point.

4.3.3 Cloud-Based Design. FeIDo foresees multiple redundant cre-
dential service instances that operate on public cloud platforms,
which mainly serves two purposes. First, users do not risk losing
the key derivation secret—all they need for authentication is stored
on replaceable eIDs. Second, as public credential services can be
hosted and shared by many, the costs become negligible. For a more
detailed discussion on deployment scenarios, we refer to § 4.6.1.

Given that the credential service is offloaded to the cloud, users
want to ensure that a contacted service instance is trustworthy, i.e.,
it is a genuine service that is protected and does not leak 𝑠kdf or per-
sonal data. Furthermore, the communication between the credential
service and the middleware must be secured. Therefore, each cre-
dential service instance operates in a TEE that allows achieving all
these properties by offering integrity, attestation, and confidential-
ity. Several TEE implementations provide these principles [44], like
Intel SGX, AMD SEV-SNP, or RISC-V Keystone—of which some are
widely available on cloud platforms.

In our prototype, we have chosen an Intel SGX-based TEE. Intel
SGX is a widespread, commodity server-grade CPU extension that
provides user-level TEEs, so-called enclaves. While Intel has dep-
recated SGX for consumer CPUs, it continues to support SGX for
cloud CPUs—exactly our setting. SGX enclaves run in dedicated,
confidentiality- and integrity-protected memory regions and ex-
pose a minimal trusted computing base (TCB), including only their
code, data, and the CPU [19]. Using Intel SGX’s remote attestation,
FeIDo users can verify the exact code and data running inside an

6

FeIDo: Recoverable FIDO2 Tokens Using Electronic IDs

enclave based on hardware-issued, cryptographic proofs and boot-
strap authenticated connections to them [33, 50]—without requiring
access to SGX-capable hardware on the client side.

The TEE-based design is key to securing a cloud-based KDF and
shielding the secret from attackers. The credential service randomly
generates 𝑠kdf on its initial startup. To be able to derive the same
user credentials after a restart, the credential service must either
previously use Intel SGX’s sealing capability to store 𝑠kdf on disk
securely for recovery [19] or securely receive a copy by another cre-
dential service instance after mutual remote attestation (cf. § 4.6.3).
Either way, the secret can never be read outside of an enclave.

4.4 Anonymous Credential Extension
The design of the credential service can be extended towards anony-
mous credentials—a feature neither provided by eID schemes nor
FIDO2 authenticators (§ 4.2). In certain settings, the relying party
might be interested in a curated form of user data. For example,
the relying party may want to verify if users are adults or children
(user age above/below𝑋 years) before granting them access to adult
content or kids-only chats or may want to restrict its service to resi-
dents of a particular country. The credential service can derive such
anonymous credentials from the trusted user attributes without
leaking the raw data to the relying party (R6). Instead of receiving
the raw user attributes (e.g., date of birth), the relying party only
learns the anonymous credentials (e.g., “is adult”). In contrast to
hardware-only tokens, FeIDo can add such meta attributes easily
in software. In order to provide users full control over their data,
the credential service shares only anonymous credentials that the
user has explicitly permitted for a given relying party.

The relying party must be able to verify anonymous creden-
tials. Otherwise, attackers could spoof meta attributes to bypass
additional access policies, such as age restrictions. Therefore, the
credential service, executing in a TEE, enables a relying party to
remotely attest that a genuine credential service has generated the
provided meta attributes (see § 4.5.4).

4.5 FIDO2 Integration
Wenow describe how our general idea of attribute-based credentials
blends into the FIDO2 authentication workflow. The middleware
mediates this integration as the central entity. In the following, we
describe the middleware and explain the message flow to show how
it ensures FeIDo’s FIDO2 compatibility, how FeIDo can support
the revocation of stolen (or lost) eIDs, and how it can extend the
authentication process with anonymous credentials.

4.5.1 Client Middleware. The client middleware is the central com-
munication mediator of FeIDo. It fulfills two roles regarding FIDO2:
on the one hand, it serves as a WebAuthn/CTAP2 agent for the
browser, which contacts the FeIDo authenticator and replies with
WebAuthn responses for the relying party. On the other, the client
middleware is part of the authenticator itself and mediates the com-
munication between the eID, credential service, and optionally, the
user. That way, the client middleware bridges the gap between mul-
tiple internal domains while ensuring seamless compatibility with
the FIDO2 infrastructure. The middleware in our prototype uses an
integration solution fully compatible with commodity browsers: a
browser extension-based proxy agent. As shown in Figure 3, the

Client Device

Cloud Platform

Client Middleware

Credential Service 
(SGX Enclave)

eID

Browser 
(agent)

Extension

CTAP2

NFC,

PACE

CARA-TLS

(GUI)

User
WebAuthn,
WebSocket

RA-TLS,

CTAP2

Figure 3: The client middleware is the central mediator and
consists of multiple modules for communication with the
browser extension, credential service, eID, and user.

TLS/HTTPS

PACE

RA-TLS

Relying Party Cred. ServiceeID Middleware

WebAuthn Register/Login

WebAuthn Response

Attributes, Metadata

Attributes, Metadata

Credential/Assertion

eID Chip Authentication

PA: Verify eID
Certs + Attributes

FIDO Cred.
Derivation

TLS/HTTPS

PACE

RA-TLS

Figure 4: Message flow in a FeIDo authentication session.

browser extension cooperates with the client middleware to inte-
grate FeIDo into a browser’s WebAuthn framework.

4.5.2 FIDO2 Authentication Workflow. A FeIDo authentication ses-
sion follows the message flow in Figure 4. On a web authentication
request, the agent (browser) notifies the client middleware. The
middleware then communicates with the credential service and
eID via authenticated, end-to-end protected connections to come
up with the respective WebAuthn credential (upon registration) or
assertion response (upon authentication) for the relying party. The
middleware mediates to give the credential service implicit access
to the user’s eID. We now iterate over these steps in more detail:

(1) FIDO2 Authentication Initialization. To initiate a FIDO2-based
authentication, the relying party sends a WebAuthn registration
or authentication request to the agent (typically, a user’s browser).
The agent then reaches out to the appropriate authenticator as
described in § 2.1. In our prototype, the browser extension monitors
browser sessions for calls to the WebAuthn request APIs. On a web
authentication request, the browser extension notifies the client
middleware via a local WebSocket connection and forwards the
WebAuthn request. That way, the browser extension integrates the
client middleware as a WebAuthn agent into the browser. The client
middleware can then start processing the request as part of the

7

Fabian Schwarz, Khue Do, Gunnar Heide, Lucjan Hanzlik, & Christian Rossow

FeIDo authenticator. The choice of WebSocket has the advantage
that it is compatible with commodity browsers and enables an easy
relocation of the FeIDo authenticator to an auxiliary user device,
e.g., a smartphone, in case the client device has no eID reader.

(2) Reading User Attributes. Next, the client middleware estab-
lishes a PACE-secured connection with the eID to read the personal
attributes, according to the description in § 4.3.1. It defers the CA-
based eID validity check to a later stage. Depending on the eID and
agent, the client middleware may prompt for user interaction, such
as putting the eID on the reader or entering its PIN, if required.

(3) Credential Service Interaction. The client middleware then
establishes a secure network connection to the credential service to
share the user attributes. To this end, the client middleware must
verify that the connection is end-to-end protected and established
with a genuine, TEE-protected credential service instance. There-
fore, the client middleware uses RA-TLS [33, 50], which combines a
TLS connection with a TEE-provided remote attestation. That way,
the client middleware has a hardware-assured guarantee that it com-
municates with a credential service instance that is TEE-protected,
well-behaving, and does not leak credentials or attributes to others.

As shown in Figure 3, the credential service incorporates an RA-
TLS server endpoint [33] for attested, end-to-end protected com-
munication with the client middleware. A TLS server key pair is
freshly generated by the credential service enclave on startup or se-
curely shared across different credential service instances (cf. § 4.6).
RA-TLS binds the hash of the TLS server’s public key to the SGX
attestation report by incorporating it as authenticated user data and
then integrates the resulting signed attestation quote inside the TLS
server certificate. This integration enables the client middleware
to verify the hardware-assured identity of the credential service
and its binding to the established TLS connection as part of the
TLS server certificate validation [33, 50]. The client middleware can
then securely request WebAuthn operations from the credential
service through the RA-TLS connection.

(4) eID and Attribute Validation. After receiving the user at-
tributes, the credential service has to validate them using Passive
Authentication (PA; cf. § 2). Furthermore, it uses Chip Authentica-
tion (CA; cf. § 2), initiated through the middleware’s PACE channel,
to verify that the service can access the eID that shipped the at-
tributes. If both succeed, it uses the KDF to derive the user-specific
authentication credentials: skcred and pkcred. Note that it is vital
that the credential service performs this validation and only re-
lies on the middleware to tunnel the respective communication.
Otherwise, a malicious middleware could spoof arbitrary personal
attributes and eIDs and thus perform impersonation attacks.

(5) Authentication Termination. Finally, to conclude the authen-
tication, the credential service sends the reply for the requested
authentication operation to the client middleware [41], i.e., the
signed credential public key pkcred on a registration and the asser-
tion challenge signed by the private key skcred on a login request,
respectively (see § 4.3.2). The middleware converts this into a Web-
Authn Response and shares this with the relying party. To the relying
party, this workflow is entirely transparent—it will not even notice
that eID data was read/used at any point in time.

4.5.3 eID Revocation. FeIDo is designed as a second factor for 2FA.
Therefore, stealing a user’s eID does not suffice to gain access to the
user’s accounts (§ 5.3.2). Having said this, FeIDo supports revocation
of stolen eIDs to prevent account hijacking attacks if attackers have
additionally compromised the primary factor or if FeIDo serves as
a sole authenticator (§ 7.1). FeIDo foresees three complementary
eID revocation strategies, providing different tradeoffs.

First, the credential service can consult existing trusted databases
for stolen eIDs on eID validation (§ 4.5.2, step 4), such as Interpol’s
I-Checkit service [30], and deny their use for authentication. The
eID lookup does not leak personal user data as it only requires
pseudonymous eID identifiers (number, type, issuing state). This
approach does not add state or complexity to the credential service
but requires trust in the service provider (e.g., Interpol) not to re-
enable or DoS eIDs and might require a small fee [30].

Second, the credential service can derive and share eID-specific
revocation certificates with the client middleware, which users can
leverage on demand (e.g., upon eID loss) to denylist a particular
eID for all credential service instances. The middleware can protect
the certificates in client-side keystores that require physical device
access and user authentication [6]. On eID validation, each cre-
dential service checks the denylist and aborts authentication. That
way, FeIDo can securely enable eID denylisting without requiring
a trusted third party but client-side certificate storage and secure
state synchronization of the eID denylist by the credential services.

Third, web services can block users on a per-eID basis. The
credential service provides web services with service-specific,
pseudonymized eID identifiers 𝑖𝑑𝑠𝑟 𝑣 that the web services can store
together with a user’s FIDO2 public key. That way, web services can
deny specific eIDs to enable users to revoke old eIDs when logging
in with new ones—all without requiring additional state on the cre-
dential service or client-side, but at the cost of small web services
changes. The credential services can dynamically derive unlink-
able eID identifiers 𝑖𝑑𝑠𝑟 𝑣 for each service based on the eID number,
type, and issuer: 𝑖𝑑𝑠𝑟 𝑣 = HMAC(𝑠kdf, rp𝑖𝑑 |𝑒𝑖𝑑_𝑛𝑢𝑚 |𝑒𝑖𝑑_𝑡𝑦𝑝𝑒 |𝑠𝑡𝑎𝑡𝑒).
This approach faces a potential attack window until a replacement
eID has been acquired (cf. § 4.2) and registered on the web ser-
vices. However, users can immediately close it if they own a second
eID (e.g., eID and ePassport) or leverage one of the previous two
approaches, i.e., report the eID as stolen or denylist it.

4.5.4 Anonymous Credentials in FIDO2. FeIDo’s credential service
enables a relying party to query pseudonymousmeta user attributes,
so-called anonymous credentials, on every authentication (cf. § 4.4).
The relying party can query these meta attributes (e.g., “is adult”)
using WebAuthn extensions [41] defined by FeIDo. On an authenti-
cation request, the middleware asks the user which of the requested
meta attributes they want to share with the given relying party and
caches the decision for future requests. Only meta attributes explic-
itly permitted by the user are requested of the credential service,
so users stay in full control over their data. The credential service
calculates the meta attributes based on the verified personal user
attributes as part of the regular authentication process and includes
them (e.g., “is adult: true”) inside the signed WebAuthn response
data (authenticator data [41]).

It is crucial that the relying party can verify that the provided
meta attributes were not spoofed but computed by some genuine

8

FeIDo: Recoverable FIDO2 Tokens Using Electronic IDs

FeIDo authenticator based on verified user attributes. Therefore, the
credential service binds the public key hash of the WebAuthn key
pair used for signing the credential generation response, called the
“attestation key pair” [41], to the SGX attestation as authenticated
user data (cf. § 4.5.2, step 3). That way, the credential service enables
a relying party to link every user credential to a genuine service TEE.
Thus, the relying party transitively knows that all meta attributes
associated with the credential have also been generated by the
(code-wise) same credential service and are therefore trustworthy.

4.6 Deployment and Failover
FeIDo’s design enables a cost-efficient, flexible, and scalable deploy-
ment on commodity hardware. However, FeIDo also faces failover
challenges that it must address to assure credential access.

4.6.1 Component Deployment. The FeIDo authenticator is com-
patible with the FIDO2 standard for web authentication and can
therefore be transparently used for existing relying parties (cf. § 6).
FeIDo leverages off-the-shelf eIDs on the client-side and relies on
commodity TEEs for its credential service. That way, FeIDo becomes
easily deployable and does not demand additional user hardware
as required by dedicated hardware or virtual FIDO2 authenticators.

FeIDo’s credential service can be securely deployed on any re-
mote service.We envision individuals or organizations volunteering
to operate multiple credential service instances in a cloud, similar
to software mirrors or Tor [24] nodes. That way, the credential ser-
vices become widely accessible and can be shared by many users, so
deployment costs become negligible. As the attribute-based creden-
tials require only an initial state on the credential service (the secret
and TLS server key), several service instances can be deployed in
parallel without state synchronization—enabling wide availability
and load balancing. Users can then freely choose any of the ser-
vices for authentication as long as the service shares the KDF secret
required for deriving the requested user credential. We discuss the
credential service’s secret bootstrap and failover in § 4.6.3 and the
possibility of local enterprise deployments in § 7.2.

FeIDo’s client middleware can be deployed as a regular appli-
cation on any client device that supports an eID reader interface.
The typical eID interfaces include NFC, USB, and BLE and are thus
widely available (§ 2.2). If no reader is supported, e.g., on a worksta-
tion, the middleware can be offloaded to an auxiliary device, such as
a smartphone (§ 4.5.2). The presented WebAuthn integration of the
middleware via a browser extension is compatible with commodity
browsers, as demonstrated by our prototype (§ 6.1).

4.6.2 Update Management. FeIDo’s design as a virtual FIDO2 au-
thenticator enables flexible update management. In contrast to
dedicated hardware authenticators, all components of FeIDo can
be updated via software or microcode updates. Therefore, the com-
ponents can be quickly patched without extra (hardware) costs for
users or credential service providers. FeIDo’s attribute-based cre-
dentials enable users to seamlessly use any replacement eID issued
by the same state that includes the same verifiable user attributes
(§ 4.3) because the KDF will derive the same credential keys (R3).

One typical but infrequent corner case occurs if user attributes
change, such as names after marriage. Such changes result in dif-
ferent WebAuthn credentials and thus require a user to re-register

new credentials for their accounts. The same argument holds for
users immigrating to other countries. Having said this, as FeIDo
seamlessly accepts any valid, non-revoked user eID, users can use
their "old" documents for migrating to newer attributes without
risking account loss. We will discuss this approach further in § 7.3.

4.6.3 Secret Management. The credential service only requires
minimal state on bootstrap: a KDF secret 𝑠kdf and a TLS server key
pair. The credential service can freshly generate the TLS server
keys on each startup. If required for load balancing, the credential
service can send a certificate signing request to a trusted certificate
authority via TLS or even securely share the TLS server keys with
other credential service instances via RA-TLS channels.

Secure management of 𝑠kdf is crucial because 𝑠kdf is part of the
KDF input and binds the user credentials to the credential service
instances (cf. § 4.3). A credential service can recover user credentials
only if using the same 𝑠kdf used for creation. Analogously, multiple
credential service instances can derive the same user credentials
only if they share the same 𝑠kdf. Therefore, FeIDo and the credential
service providers must ensure that 𝑠kdf can be restored. At the same
time, 𝑠kdf must never be disclosed outside of the TEE protection
domain to guarantee that it remains unknown to attackers.

We realize this guarantee as follows. The initial credential ser-
vice instance generates a random 𝑠kdf. The credential service then
uses the Intel SGX sealing functionality which binds 𝑠kdf to the
credential service enclave and stores 𝑠kdf encrypted and signed on
the untrusted disk for recovery on a restart [19]. Sealing allows data
recovery only on the same physical CPU. Should multiple credential
service instances be scaled to different CPUs, they must cooperate
to synchronize on the key. The credential service providers can
configure new service instances to securely fetch 𝑠kdf from other
instances via mutually-attested RA-TLS channels. This way, 𝑠kdf is
only accessible by verified, TEE-protected credential services and
is resilient against partial service failures or data loss.

5 SECURITY ANALYSIS
In this section, we give a security analysis of FeIDo (§ 5.1 and § 5.2),
discuss the implications of different component thefts (§ 5.3), and
conclude with an analysis of FeIDo’s anonymous credentials (§ 5.4).

5.1 FeIDo’s FIDO2 Security
We now provide arguments about the security of FeIDo and leave
a more formal security proof of our scheme open to future work.
We show that based on the security of the building blocks of FeIDo,
it can be seen as a standard virtual authenticator that uses a keyed
pseudorandom function to generate FIDO credentials. As shown
by Hanzlik, Loss, and Wagner [29], such a virtual token is formally
secure against a man-in-the-middle attacker residing between the
agent and the relying party. The authors also prove the unlinkability
of the generated FIDO credentials. We will consider two types of
attackers: (A1) a man-in-the-middle attacker residing between the
agent and the relying party, and (A2) an attacker that additionally
controls the communication between the components of FeIDo.

Man-in-the-middle attackers (A1) cannot distinguish whether
they interact with FeIDo or a standard virtual authenticator. It is
in line with the design goals specified in § 3.1, where we state
that FeIDo must comply with the FIDO2 protocols (R1). This also

9

Fabian Schwarz, Khue Do, Gunnar Heide, Lucjan Hanzlik, & Christian Rossow

means that we can directly apply the result from [29], assuming
the function used to derive the credentials is pseudorandom. In our
prototype, we use HMAC (cf. § 4.3.2, Equation 1), which Bellare
showed to be a pseudorandom function [12]. Therefore, the security
of FeIDo follows from [29], i.e., FeIDo provides unlinkable FIDO cre-
dentials and is secure against a man-in-the-middle attacker residing
between the agent and the relying party.

5.1.1 Reduction Security of FeIDo: We now discuss the case where
an attacker can additionally interact with the components of FeIDo
(A2). We argue that assuming the credential service enclave is a
secure TEE (§ 5.2.1), the KDF secret is not accessible outside valid
credential services (§ 5.2.1), attributes used as input are unique
(§ 5.2.3), and the eID is secure and the authority issuing the eID
is trusted (§ 5.2.2), it is not easier to break the security of FeIDo
than in the just discussed case where the attacker cannot interact
with the components of FeIDo (A1). Trusting the issuing authority
also assumes that an insider attacker cannot apply for an eID for
different personal data, e.g., to launch a mimicry attack. In § 5.2,
we show that those assumptions are reasonable.

Under those assumptions, the only difference between FeIDo and
a virtual token is the communication between components. There-
fore, we argue the security of FeIDo by reduction, starting from the
secure Extended Access Control (EAC) protocol of ICAO-compliant
eIDs—an authenticated key exchange protocol between an eID and
a terminal. EAC has been proven to be secure by Dagdelen and
Fischlin [20]. The protocol combines eID authentication using CA
and PA (§ 2.2) with certificate-based authentication of the terminal,
called Terminal Authentication (TA) and described in [47]. In EAC,
an eID reader communicates with a terminal using TLS to proxy
CA, PA, and TA for mutual eID and terminal authentication. We
now show how FeIDo’s components correspond to the ones used
by the EAC security model in [20]. In both cases, the role of the eID
remains the same. We simplify the function of the client middle-
ware to that of an RFID/NFC reader. Finally, the credential service
is the terminal verifying the eID. We will now briefly argue that
the minor changes in FeIDo do not influence security. We begin by
showing that RA-TLS provides the same security guarantees as a
TLS connection and implies a trusted credential service. These two
results allow us to argue the security of FeIDo without executing
Terminal Authentication and directly apply the results from [20]
since the other subprotocols used (CA and PA) are the same.

RA-TLS security: The RA-TLS protocol combines the guarantees
of TLS with the remote attestation of a TEE (cf. § 4.5.2, step 3).
Therefore, it provides an end-to-end protected connection between
the client middleware and a verified credential service instance—
protecting against network attackers and spoofed credential ser-
vices. It follows that the RA-TLS connection satisfies the security
properties of the TLS connection between the eID reader and ter-
minal as required by the EAC model.

EAC security: The EAC protocol considers authentication of the
terminal and the eID. The credential service is protected inside a
TEE against system-level attackers at the service provider platform.
In addition, the middleware remotely attests the protection and
exact code of the credential service as part of the RA-TLS connec-
tion establishment. In combination with the credential service’s

open source design—allowing for code audits (cf. § 6.1)—users can
validate the service’s correctness and integrity. Under the assump-
tion that the credential service executes in a secure TEE (§ 5.2.1), it
follows that the credential service, i.e., the terminal, is trusted. It
also means that the security of the whole EAC protocol holds even
if, in FeIDo, we do not execute Terminal Authentication. Finally, the
Passive Authentication protocol (PA, cf. § 2.2) provides the authen-
ticity of the public key used by the eID during Chip Authentication
(CA, cf. § 2.2), which is required by the EAC proof.

5.2 Security Assumption Verification
In the following, we discuss and verify our security assumptions
made in FeIDo’s security argument (cf. § 5.1.1).

5.2.1 Credential Service TEE and Secret Security. The TEE protec-
tion of the credential service is crucial for FeIDo to protect the
KDF secret and thus the users’ FIDO2 credentials against malicious
service providers and spoofed services. Furthermore, remote attes-
tation ensures that all communication parties can validate whether
they communicate with a genuine credential service.

The TEE-assisted protection of the secret guarantees that an
attacker who knows all user attributes cannot forge credentials. To
derive the same secret key as the authenticator, the attacker would
need to retrieve the credential service’s secret key 𝑠kdf for the KDF.
The credential service protects 𝑠kdf using the runtime protection
and secure storage mechanisms of its TEE. The credential service
shares 𝑠kdf only with other verified credential services via mutually-
attested, end-to-end protected connections (cf. § 4.6.3). Furthermore,
relying parties can detect abuse of leaked secrets (cf. § 5.3.3).

5.2.2 eID Security and Malicious eID Authority. FeIDo relies on
secure eIDs and a trusted eID authority to securely bind creden-
tials to users based on their eIDs. FeIDo assumes the eIDs are free
of backdoors and deploy typical smartcard protections, such as
unclonable memory, constant-time cryptographic operations, and
authentication mechanisms (see § 2.2, § 3.2). That way, FeIDo can
rule out attackers trying to clone valid user eIDs for account hijack-
ing. Thus, FeIDo follows similar assumptions as dedicated hardware
authenticators, where trust is put into the authenticator devices and
their manufacturing vendors. Note that for eIDs, cross-authority
attacks are impossible, i.e., a malicious state trying to create valid
eIDs of another. eIDs include the issuing country and are signed
by a country-specific key checked during Passive Authentication.
However, a malicious country M can still issue an eID that matches
all attributes of an existing eID of a target country T except the
issuing country code T. Therefore, FeIDo explicitly includes the
issuing country as input to the KDF (𝑠𝑡𝑎𝑡𝑒 , Equation 1), resulting in
different credentials. Thus, a malicious state (a.k.a. country) cannot
issue eID clones to hijack accounts of residents of a different state.

5.2.3 Uniqueness of Personal Attributes. FeIDo’s KDF uses a per-
son’s full name, date of birth, place of birth, and state as input
(cf. § 4.3, Equation 1). If two persons of the same state are born on
the same date, in the same city, and share the full name, they share
the same credentials. The likelihood of such a collision highly de-
pends on the city’s respective naming convention and size. Without
perfect global data to precisely measure this risk, we can only give
approximations. For example, consider the US. Sweeney showed

10

FeIDo: Recoverable FIDO2 Tokens Using Electronic IDs

that place, gender, and date of birth could uniquely identify half
of the US population [51]. Surprisingly, this is without considering
the name and surname, which introduce significant entropy. More
generally, assume n users are namesakes born in the same state,
city, and year. Then, assuming 𝑑 = 365 days per year, based on the
birthday paradox, 𝑃 = 𝑑−1

𝑑
∗ 𝑑−2

𝑑
∗ . . . ∗ 𝑑−(𝑛−1)

𝑑
is the probability

that none of these users share the same birthday. The resulting
probabilities generally follow a Gaussian-like curve, but for smaller
groups of namesakes, the chance for a collision decreases quadrati-
cally with the number of namesakes. To give upper bounds for the
likelihood of a full collision in the US, we use the data from the
US birth names inventory [4]. Consider the most common female
(Olivia) and male name (Liam), combined with the most common
surname (Smith). On average, even in the largest city of the cen-
sus (NYC), there were just around 𝑛 = 8 persons born with this
name combination in 2019—resulting in a 92% chance even these US
“worst-case combinations” of name/place/date are unique. Given
the example of the US, one can argue that most users have unique
personal data and hence KDF inputs. Admittedly, this argument
may differ in naming conventions with highly-skewed name distri-
butions. However, even in the unlikely event of full collisions, the
security implications are limited in a 2FA setting. § 7.1 discusses
how uniqueness can be extended for a single-factor setting.

5.3 FeIDo Component Theft (or Loss)
We now discuss how the theft (or loss) of the client device, eID, or
KDF secret affects the security of FeIDo.

5.3.1 Client Device Theft. By design, FeIDo only runs the secretless
client middleware on the client devices, which is not involved in the
attribute-based credential derivation but only serves as a message
proxy between the eID and credential service (§ 4.5). Therefore,
theft of a client device has no security impact on FeIDo and, in
contrast to client-side virtual FIDO2 tokens (cf. § 2.1.1 and § 4.2),
does not stop a user from accessing their credentials.

5.3.2 eID Token Theft. At first glance, FeIDo seems to share the se-
curity guarantees of hardware tokens upon token/eID theft: Attack-
ers could use the stolen eID for authentication operations. While
in a 2FA setting—FeIDo’s main use case—a stolen eID (or token) is
not sufficient for attackers to hijack user accounts, attackers could
gain access if they have additionally compromised the primary
authentication factor or if FeIDo is used as a sole authenticator
(§ 7.1). Similar to hardware tokens, the credential services could
restrict service to eID types that support a PIN known only to the
owner to prevent abuse by attackers. Then again, FeIDo enables
for additional protections that off-the-shelf hardware tokens do
not offer. In contrast to hardware tokens (§ 4.2), FeIDo does support
central and per-service revocation of stolen eIDs, which blocks
account hijacking attempts (§ 4.5.3). Furthermore, on an eID loss,
users neither need backup tokens, less secure login alternatives, nor
re-registration of new credentials. Instead, FeIDo’s attribute-based
credentials enable secure credential recovery (and thus account
recovery) directly via replacement eIDs.

5.3.3 KDF Secret Theft. FeIDo’s KDF secret 𝑠kdf is crucial for de-
riving the user credentials. Therefore, the credential service uses
its TEE to protect 𝑠kdf against theft by restricting access to 𝑠kdf

only to secure, verified service instances (cf. § 5.2.1). Further-
more, FeIDo protects 𝑠kdf against data loss and partial failures by
combining TEE-protected backups with secure credential service
replication (cf. § 4.3.2). That way, FeIDo can guarantee creden-
tial availability and avoid 𝑠kdf changes that would require creden-
tial re-registrations. Note that even if the secret should ever leak,
offline-calculated credentials will still not be accepted by the rely-
ing parties—remote attestation of the valid credential service can
ensure that the credentials were genuinely derived (cf. § 4.5.4).

5.4 Security of Anonymous Credentials
We now discuss the security guarantees of FeIDo’s anonymous
credentials (§ 4.4) and their implications on an eID theft (§ 5.3.2).

5.4.1 Anonymity / Unlinkability Guarantees. FeIDo’s anonymous
credentials enable a relying party only to learn pseudonymous
meta user attributes. The credential service only allows for meta
attributes that provide a sufficiently large anonymity set such that
the anonymous credentials provide reasonable group anonymity—
even when used in conjunction. In addition, users have full control
over the attribute sharing because they can allow/block any meta
attribute on a per-relying party basis andmust explicitly perform an
authentication to allow for queries by the relying party (cf. § 4.4 and
§ 4.5.4). This rules out (mass) query attempts with the goal of user
deanonymization. In the following, we assume the meta attributes
to be anonymous and defer their full specification to future work.

Even though FeIDo’s anonymous credentials are bound to the
FIDO2 authentication process (§ 4.5.4), they do not enable linking
attacks. While a relying party can notice via an SGX attestation
report that the meta attributes are coming from some credential
service, i.e., FeIDo authenticator, different relying parties can still
not link multiple authentications to the same FeIDo instance. First,
we showed that FeIDo is a FIDO2 authenticator (cf. § 5.1), i.e., its
credentials and authentication operations are unlinkable. Second,
the anonymous credential integration introduces no linkable infor-
mation because (1) the meta attributes are anonymous, (2) SGX’s
attestation provides unlinkability [19], and (3) credential services
use fresh per-credential attestation keys (cf. AnonCA [41]).

5.4.2 Impact of eID Theft. The anonymous credentials preserve
FeIDo’s security guarantees and easy account recovery on an eID
theft (§ 5.3.2). However, while FeIDo’s eID revocation prevents
any abuse of stolen eIDs, unnoticed theft, which does not lead to
an eID revocation, can be a real threat in practice for bypassing
access policies that are based on a user’s anonymous credentials.
For instance, non-adult attackers might temporarily steal an eID
from an adult (e.g., a parent) to bypass age gates. To prevent such
attacks, FeIDo’s credential service could restrict service only to eIDs
that support an access PIN only known to the eID owner (§ 5.3.2).

6 EVALUATION
We now describe our FeIDo prototype and evaluate its performance.

6.1 Prototype
Our current prototype consists of an Android app, a browser ex-
tension, and an SGX enclave. For the sake of demonstration, with-
out losing generality, we picked a German ePassport as eID—but

11

Fabian Schwarz, Khue Do, Gunnar Heide, Lucjan Hanzlik, & Christian Rossow

could have used any ICAO-standardized eID. Our prototype is open
source1 (see § 1) and currently focuses on the core concepts for
web authentication. It does not yet support anonymous credentials.

6.1.1 Client Middleware. An Android app represents the client
middleware. It provides a UI for manually entering the eID’s static
password as required for PACE—a one-time process that can be
replaced by taking a photo of the user’s eID (cf. § 2.2). The client
middleware registers an NFC intent filter for detecting eIDs and
uses the JMRTD library [42] for NFC-based communication with
them, e.g., for PACE and data group queries. The client middleware
communicates via protobuf messages with the credential service
and browser extension through an RA-TLS (credential service) and
WebSocket connection (browser extension), respectively. The client
middleware enables the CA channel between the eID and the creden-
tial service by forwarding raw Application Protocol Data Unit [21]
commands. As a performance optimization, the client middleware
can cache data groups read from the user’s eID to avoid re-reading
them via NFC. Having said this, PACE, PA, and CA are re-executed
on every authenticator operation to verify the eID (§ 4.3.1, § 4.5.2).

6.1.2 Browser Extension. The browser extension uses a content
script to overwrite the create() and get() functions of a browser’s
navigator.credentials API. That way, the browser extension inter-
cepts WebAuthn requests by a web page and can forward them
to the FeIDo authenticator through the client middleware. This
approach enables easy integration of FeIDo without emulating a
physical device (e.g., USB). The browser extension manually crafts
respective return values for the overwritten functions based on the
client middleware’s WebAuthn response data to interact with the
web pages seemingly. While we tested the browser extension with
Firefox, the core APIs are also available in other browsers.

6.1.3 Credential Service. The credential service is implemented
based on the Intel SGX SDK v2.15 [17] in ∼2.8 k lines of C/C++
code (excl. libraries). Upon an incoming RA-TLS connection by a
client middleware, the credential service sequentially processes the
WebAuthn operation request and eID information before replying
with a WebAuthn response. We have integrated an RA-TLS server
endpoint based on the SGX SSL patches of the SENG-SDK [50]. For
parsing the eID data groups and running the PA and CA protocols,
we patched the OpenPACE library v1.1.2 [26] to add support for
German ePassports, SGX, and RA-TLS. To demonstrate eID revoca-
tion (§ 4.5.3), we have implemented a service that mimics Interpol’s
I-Checkit database service of stolen eIDs [30]. After CA, the creden-
tial service queries the blocklist via TLS using the eID’s document
number, type, and country of issuance (following [30]) and aborts
authentication on a database hit. For the attribute-based FIDO2 cre-
dential derivation, the credential service uses a SHA-256 HMAC to
hash the attributes and generates a WebAuthn public key credential
based on the hash. The credential service prototype currently only
supports ES256 for WebAuthn and German ePassports.

6.2 Performance Evaluation
We now evaluate the performance of our prototype implementation
during a FIDO2 web authentication process.

6.2.1 Methodology. In our experiment, we host a local instance
of the webauthn.io test page [36] and measure the time it takes to
(i) register and (ii) log into an account using single factor FIDO2
authentication. We run the web service and the credential service
on a Dell XPS 9560 laptop with an Intel® i7-7700 HQ and Ubuntu
18.04 LTS. For the agent, we use two devices: we run Firefox 96 and
FeIDo’s browser extension on the Dell XPS but run the middleware
on a Pixel 4a phone with Android 12. The laptop and phone are
interconnected via a local 1 Gbps network using Ethernet and Wifi.

To assess the practical feasibility of FeIDo, we compare its per-
formance against two FIDO2 authenticators. For our measurements,
we take a SoloKey Hacker v2.1 with an unlocked 4.1.2 firmware
and a Nitrokey with a 2.4.0 firmware, which are connected via USB
to the laptop, as baselines. We measure the average time over ten
iterations for each operation (registration, login) for each authen-
ticator. We keep the WebAuthn attestation feature of webauthn.io
disabled for the measurements and assume the web page and client
middleware app (with cached PACE password) to be preloaded. We
assume that the ePassport is already placed on the NFC reader.

6.2.2 Evaluation Results. There were no significant time differ-
ences between the registration and login operations for all authenti-
cators. We have measured the performance of our FeIDo prototype
two times: once the initial, uncached performance (uncached) and
once with the data groups of the ePassport cached by the client
middleware (cached) as described in § 6.1. The uncached FeIDo
operations took ∼2980 ms on average, which is close to the average
performance of Nitrokey of ∼3183 ms. The overall median duration
of Nitrokey has been ∼2327 ms and the average duration of SoloKey
∼1813 ms. The standard error of the means (SEM) of both FeIDo
setups was below 28 ms and those of SoloKey below 101 ms. Ni-
trokey faced bigger SEMs of ∼669 ms (register) and ∼844 ms (login)
due to outliers caused by its unreliable user confirmation based on
squeezing the authenticator case in contrast to SoloKey’s button.

By caching the ePassport data groups in the client middleware,
FeIDo has significantly improved its average operation duration by
∼19.3 % to ∼1878 ms, which is close to that of SoloKey. This shows
that reading ePassport data via PACE contributes a major part. In
fact, our measurements have shown that the overall communication
processing between the client middleware and ePassport currently
makes up ∼68 % to 78 % of FeIDo’s operation duration. The total
operation duration could probably be further improved by paral-
lelizing the prototype, e.g., by setting up the PACE and RA-TLS
connections concurrently or deriving the WebAuthn credentials
while waiting for the PA and CA results. The current measurement
excludes the eID revocation lookup as we have no access to the Inter-
pol I-Checkit service. However, [30] states a lookup time of ∼30 ms
plus network latency, which is an insignificant extra overhead. We
conclude that the performance of our current FeIDo prototype is
already in the range of existing hardware FIDO2 authenticators.

7 DISCUSSION
In the following, we discuss FeIDo’s applicability to single-factor
(§ 7.1) and enterprise authentication schemes (§ 7.2) and how FeIDo
operates in settings where personal user attributes change (§ 7.3).

12

FeIDo: Recoverable FIDO2 Tokens Using Electronic IDs

7.1 FeIDo as Sole Authenticator (Passwordless)
While we assume FeIDo to be used as an additional factor in a
2FA scheme, in the following, we want to discuss in how far FeIDo
could serve as a sole authenticator for FIDO2 web authentication.
As FeIDo is a FIDO2-compliant virtual authenticator (cf. § 5.1), it
can be directly used as the sole token. However, to provide high
security in a non-2FA setting, FeIDo requires additional protection.

On an eID theft, just as hardware tokens, FeIDo must prevent
account hijacking by attackers. To handle this, as proposed in § 5.3.2,
FeIDo’s credential services can restrict service to eIDs that support
an access PIN known only to the genuine owner—analogous to
PINs provided by some hardware tokens—and implement a suitable
subset of FeIDo’s eID revocation mechanisms (cf. § 4.5.3). That way,
stolen eIDs become unusable by attackers not knowing the PIN or
even entirely revoked for FeIDo authentication operations.

While a collision of our chosen set of user attributes is unlikely
in practice (§ 5.2.3), when considering FeIDo for usage as the sole
authenticator, we must guarantee user-unique KDF inputs to derive
distinct credentials. To this end, we could add a user-specific secret
salt to the KDF input set (§ 4.3.2). This secret must be a strong, client-
side random password accessible by the client middleware, which
is forwarded to a credential service as part of the authentication
request. That way, even on a full attribute collision of two users,
their KDF input and thus derived credentials stay distinct. While
the secret can be cached on the client device, e.g., in a phone’s TEE-
protected key storage [6], the user has to back up the salt against
client device loss. As a positive side effect, the salt also protects
against eID theft and cloned eIDs issued by malicious authorities.

The depicted sole-factor usage of FeIDo allows to draw a
comparison to sole-factor passwords for web authentication. All
FIDO2 schemes, including FeIDo, are resilient against several at-
tacks that passwords do not withstand, such as phishing, shoul-
der surfing, password database leaks, or cracking/guessing at-
tacks [22, 25, 45, 49]. Moreover, whereas password leaks give attack-
ers immediate access to the associated account(s), the FeIDo/FIDO2
credentials cannot be extracted to impersonate users even if the
attacker has physical access to the token (or eID). While attackers
can reuse stolen/lost tokens to impersonate users, access codes (or
the PIN/salt depicted above) mitigate this threat. Admittedly, pass-
words have lower requirements: they are widely supported, do not
have to be carried, and require no special or dedicated hardware.
For a more detailed comparison between sole-factor FIDO2 and
passwords, we refer to Lyastani et al.’s systematization paper [27].

7.2 Enterprise Authentication Use Cases
So far, we have focused on FeIDo being used by private users. We
now discuss FeIDo’s applicability to enterprise-focused authentica-
tion use cases, loosely following those given in [10] by the FIDO
Alliance. As FeIDo is fully FIDO2-compliant, in principle, FeIDo
can be used for any enterprise setting where FIDO2 hardware or
virtual authenticators are in use. Employees can directly use their
eIDs with FeIDo for enterprise two- or single-factor web authenti-
cation. Alternatively, if a company issues electronic employee ID
badges that provide the required personal attributes and compatible
authentication protocols (§ 2.2), FeIDo could support them.

FeIDo can also be used for local enterprise service or device au-
thentication if network connectivity is available. FeIDo requires ac-
cess to a credential service and an attestation service for validating
the TEE protecting the credential service. If internet connectivity
is available (default), both services can be hosted remotely, e.g., in
a public cloud and by the TEE vendor. Alternatively, to enable local
intranet settings, a company can host a private credential service
and attestation service (e.g., Intel SGX DCAP [18]) on a local enter-
prise server. That way, FeIDo can even be used for other settings
such as local client device (domain) logins, remote logins, or SSH
logins. FeIDo can even support physical access, e.g., via smart door
locks, as smart locks often support NFC and intranet access for
checking credentials against the enterprise database.

FeIDo’s requirements are thus comparable to those of existing
FIDO2 authenticators, except authenticators do not require access
to a TEE-protected credential service, which simplifies local setups.
In addition, they can better support offline use cases.

7.3 eID Migration on Attribute Changes
FeIDo’s KDF-based credentials rely on the fact that user attributes
do not change.While this is true for most attributes such as date and
place of birth, names or nationalitymay change. For example, users
may change their surname upon marriage. Since the credential
derivation is based on a user’s attributes, the user loses access to
the relying parties once attributes change. This migration problem
can be solved by temporarily switching to other authentication
schemes and eventually (re-)linking the (new) user data to the
account. Alternatively, users can leverage the fact that they may
own multiple valid eIDs issued by the same state (e.g., a national
ID and an ePassport). FeIDo transparently accepts any valid, non-
revoked eID of a user. The user can first apply for just one of the
two documents with their new data. They can then still use the
“old” document for a final authentication based on their outdated
data and then link their new document to their accounts. Once all
accounts are migrated, the user can finally replace the other eID.

8 CONCLUSION
FeIDo represents the first attribute-based FIDO2 virtual authenti-
cator. The system uses an eID as the physical component that the
user possesses and a protected credential service that interfaces the
eID’s authentication mechanism with the FIDO2 protocol. FeIDo
addresses two major open challenges in FIDO2: cost efficiency, and
recovery in case of authenticator loss. We also show that it is secure
under reasonable assumptions. In contrast to existing FIDO2 tokens
and eIDs, FeIDo additionally enables anonymous credentials, which
the credential service can provide as a FIDO2-compatible extension.

Finally, we provide an open-source prototype of FeIDo and com-
pare its efficiency with existing hardware authenticators. In par-
ticular, we show that the execution time of our prototype imple-
mentation is comparable with standard FIDO2 authenticators. We
conclude that FeIDo is a practical, cost-efficient, and secure alter-
native to existing hardware and virtual authenticators.

REFERENCES
[1] 2019. Regulation (EU) 2019/1157 of the European Parliament and of the

Council. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:
32019R1157

13

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019R1157
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019R1157

Fabian Schwarz, Khue Do, Gunnar Heide, Lucjan Hanzlik, & Christian Rossow

[2] 2020. Standardized Digital Identity on National Identity Cards.
https://www.calctopia.com/2020/02/14/standardized-digital-identity-on-
national-identity-cards/

[3] 2021. National ID cards: 2016-2021 facts and trends. https://www.thalesgroup.
com/en/markets/digital-identity-and-security/government/identity/2016-
national-id-card-trends

[4] 2021. Popular Baby Names (US). https://www.ssa.gov/oact/babynames/limits.
html

[5] 2021. The electronic passport in 2021 and beyond. https://www.thalesgroup.com/
en/markets/digital-identity-and-security/government/passport/electronic-
passport-trends

[6] 2022. Hardware-backed Keystore. https://source.android.com/security/keystore
[7] Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval. 2005. Password-

Based Authenticated Key Exchange in the Three-Party Setting. In Public Key
Cryptography, Serge Vaudenay (Ed.). Springer Berlin Heidelberg, 65–84.

[8] FIDO Alliance. 2020. Using FIDO with eIDAS Services. https://fidoalliance.org/wp-
content/uploads/2020/04/FIDO-deploying-FIDO2-eIDAS-QTSPs-eID-
schemes-white-paper.pdf

[9] FIDO Alliance. 2021. FIDO Security Reference. https://fidoalliance.org/specs/
common-specs/fido-security-ref-v2.1-rd-20210525.html

[10] FIDO Alliance. 2022. Choosing FIDO Authenticators for Enterprise Use
Cases. Retrieved July 28, 2022 from https://media.fidoalliance.org/wp-
content/uploads/2022/03/FIDO-White-Paper-Choosing-FIDO-Authenticators-
for-Enterprise-Use-Cases-RD10-2022.03.01.pdf

[11] Raad Bahmani, Ferdinand Brasser, Ghada Dessouky, Patrick Jauernig, Matthias
Klimmek, Ahmad-Reza Sadeghi, and Emmanuel Stapf. 2021. CURE: A Security
Architecture with CUstomizable and Resilient Enclaves. In 30th USENIX Security
Symposium (USENIX Security 21). USENIX Association, 1073–1090. https://www.
usenix.org/conference/usenixsecurity21/presentation/bahmani

[12] Mihir Bellare. 2015. New proofs for NMAC and HMAC: Security without collision
resistance. Journal of Cryptology 28, 4 (2015), 844–878.

[13] Jens Bender, Marc Fischlin, and Dennis Kügler. 2009. Security Analysis of
the PACE Key-Agreement Protocol. In Information Security. Springer Berlin
Heidelberg, 33–48.

[14] Inc. Biometrics Research Group. 2020. Apple launches web authentication
using FIDO standard with Touch ID or Face ID biometrics in Safari. https:
//www.biometricupdate.com/202006/apple-launches-web-authentication-
using-fido-standard-with-touch-id-or-face-id-biometrics-in-safari

[15] Dhiman Chakraborty and Sven Bugiel. 2019. SimFIDO: FIDO2 User Authen-
tication with simTPM. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security. 2569–2571.

[16] Dhiman Chakraborty, Lucjan Hanzlik, and Sven Bugiel. 2019. simTPM: User-
centric TPM for Mobile Devices. In 28th USENIX Security Symposium (USENIX
Security 19). 533–550.

[17] Intel Corporation. [n. d.]. Intel SGX for Linux. https://github.com/intel/linux-sgx
[18] Intel Corporation. 2022. Intel SGX Data Center Attestation Primi-

tives. https://download.01.org/intel-sgx/sgx-dcap/1.14/linux/docs/DCAP_
ECDSA_Orientation.pdf

[19] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptology
ePrint Archive 2016 (2016).

[20] Özgür Dagdelen and Marc Fischlin. 2011. Security Analysis of the Extended
Access Control Protocol for Machine Readable Travel Documents. In Information
Security. Springer Berlin Heidelberg, Berlin, Heidelberg, 54–68.

[21] Organización Internacional de Normalización. 2020. ISO IEC 7816-4: Identifi-
cation cards–Integrated circuit cards. Organization, security and commands for
interchange. ISO.

[22] Matteo Dell’Amico, Pietro Michiardi, and Yves Roudier. 2010. Password strength:
An empirical analysis. In 2010 Proceedings IEEE INFOCOM. IEEE, 1–9.

[23] Ghada Dessouky, Tommaso Frassetto, and Ahmad-Reza Sadeghi. 2020. HybCache:
Hybrid Side-Channel-Resilient Caches for Trusted Execution Environments. In
29th USENIX Security Symposium (USENIX Security 20). USENIX Association.
https://www.usenix.org/conference/usenixsecurity20/presentation/dessouky

[24] Roger Dingledine, Nick Mathewson, and Paul Syverson. 2004. Tor: The Second-
Generation Onion Router. In 13th USENIX Security Symposium (USENIX Security
04). USENIX Association, San Diego, CA. https://www.usenix.org/conference/
13th-usenix-security-symposium/tor-second-generation-onion-router

[25] Malin Eiband, Mohamed Khamis, Emanuel Von Zezschwitz, Heinrich Hussmann,
and Florian Alt. 2017. Understanding shoulder surfing in the wild: Stories from
users and observers. In Proceedings of the 2017 CHI Conference on Human Factors
in Computing Systems. 4254–4265.

[26] Frank Morgner and Dominik Oepen. [n. d.]. OpenPACE. https://frankmorgner.
github.io/openpace/

[27] Sanam Ghorbani Lyastani, Michael Schilling, Michaela Neumayr, Michael Backes,
and Sven Bugiel. 2020. Is FIDO2 the Kingslayer of User Authentication? A
Comparative Usability Study of FIDO2 Passwordless Authentication. In IEEE

Symposium on Security and Privacy (SP).
[28] Sérgio Gonçalves, Alessandro Tomasi, Andrea Bisegna, Giulio Pellizzari, and

Silvio Ranise. 2020. Verifiable Contracting: A Use Case for Onboarding and Contract
Offering in Financial Services with eIDAS and Verifiable Credentials. 133–144.
https://doi.org/10.1007/978-3-030-66504-3_8

[29] Lucjan Hanzlik, Julian Loss, and Benedikt Wagner. 2022. Token meets Wallet:
Formalizing Privacy and Revocation for FIDO2. https://ia.cr/2022/084

[30] Interpol. 2022. I-Checkit - FAQs brochure - Private Sector Partners. Retrieved July
25, 2022 from https://www.interpol.int/content/download/12470/file/I-Checkit_
FAQs_brochure_private%20sector_EN_LR_02.pdf?inLanguage=eng-GB

[31] Janis Danisevskis. 2018. Android Protected Confirmation: Taking transaction
security to the next level. https://android-developers.googleblog.com/2018/10/
android-protected-confirmation.html

[32] Governikus GmbH & Co. KG. 2022. AusweisApp2: Passende Smartphones &
Tablets für die Online-Ausweisfunktion. Retrieved July 27, 2022 from https:
//www.ausweisapp.bund.de/mobile-geraete

[33] Thomas Knauth, Michael Steiner, Somnath Chakrabarti, Li Lei, Cedric Xing, and
Mona Vij. 2018. Integrating Remote Attestation with Transport Layer Security.
CoRR abs/1801.05863 (2018). arXiv:1801.05863 http://arxiv.org/abs/1801.05863

[34] Hugo Krawczyk. 2010. Cryptographic extraction and key derivation: The HKDF
scheme. In Annual Cryptology Conference. Springer, 631–648.

[35] Johannes Kunke, Stephan Wiefling, Markus Ullmann, and Luigi Lo Iacono. 2021.
Evaluation of Account Recovery Strategies with FIDO2-based Passwordless
Authentication. In Open Identity Summit. Gesellschaft für Informatik e.V., Bonn.

[36] Duo Labs. 2020. WebAuthn.io (Github). https://github.com/duo-labs/webauthn.io
[37] Duo Labs. 2021. WebAuthn.io: A demo of the WebAuthn specification. https:

//webauthn.io/
[38] Zeyu Lei, Yuhong Nan, Yanick Fratantonio, and Antonio Bianchi. 2021.

On the Insecurity of SMS One-Time Password Messages against Lo-
cal Attackers in Modern Mobile Devices. In 28th Annual Network and
Distributed System Security Symposium (NDSS). The Internet Society.
https://www.ndss-symposium.org/ndss-paper/on-the-insecurity-of-sms-one-
time-password-messages-against-local-attackers-in-modern-mobile-devices/

[39] Blue Bite LLC. 2021. Android NFC Compatibility. Retrieved July 27, 2022 from
https://www.bluebite.com/nfc/android-nfc-compatibility

[40] SJB Research Ltd. 2019. Confirmed: iOS 13 to include support for NFC passport
reading - NFCW. Retrieved July 27, 2022 from https://www.nfcw.com/2019/06/
07/362943/confirmed-ios-13-to-include-support-for-nfc-passport-reading/

[41] Emil Lundberg, Michael Jones, J.C. Jones, Akshay Kumar, and Jeff Hodges. 2021.
WebAuthentication: AnAPI for accessing Public Key Credentials - Level 2. Technical
Report. W3C. https://www.w3.org/TR/2021/REC-webauthn-2-20210408/

[42] Martijn Oostdijk. [n. d.]. JMRTD: An Open Source Java Implementation of Machine
Readable Travel Documents. https://jmrtd.org/

[43] Frank Morgner, Paul Bastian, and Marc Fischlin. 2016. Securing Transactions
with the eIDAS Protocols. In Information Security Theory and Practice, Sara Foresti
and Javier Lopez (Eds.). Springer International Publishing, Cham, 3–18.

[44] Jämes Ménétrey, Christian Göttel, Marcelo Pasin, Pascal Felber, and Valerio
Schiavoni. 2022. An Exploratory Study of Attestation Mechanisms for Trusted
Execution Environments. In Workshop on System Software for Trusted Execution.

[45] Adam Oest, Penghui Zhang, Brad Wardman, Eric Nunes, Jakub Burgis, Ali Zand,
Kurt Thomas, Adam Doupé, and Gail-Joon Ahn. 2020. Sunrise to sunset: Ana-
lyzing the end-to-end life cycle and effectiveness of phishing attacks at scale. In
29th USENIX Security Symposium (USENIX Security 20). 361–377.

[46] Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Mark Silberstein, and Christof
Fetzer. 2018. Varys: Protecting SGX Enclaves from Practical Side-Channel Attacks.
In USENIX Annual Technical Conference (USENIX ATC 18). USENIX Association,
227–240. https://www.usenix.org/conference/atc18/presentation/oleksenko

[47] International Civil Avaiation Organization. 2021. Machine Readable Travel Doc-
uments Part 11: Security Mechanisms for MRTDs (eighth ed.). Technical Report.
https://www.icao.int/publications/documents/9303_p11_cons_en.pdf

[48] International Civil Avaiation Organization. 2021. Machine Readable Travel Docu-
ments Part 3: Specifications Common to all MRTDs (eighth ed.). Technical Report.
https://www.icao.int/publications/Documents/9303_p3_cons_en.pdf

[49] Hamza Saleem and Muhammad Naveed. 2020. SoK: Anatomy of Data Breaches.
Proc. Priv. Enhancing Technol. 2020, 4 (2020), 153–174.

[50] Fabian Schwarz and Christian Rossow. 2020. SENG, the SGX-Enforcing Network
Gateway: Authorizing Communication from Shielded Clients. In 29th USENIX
Security Symposium (USENIX Security 20). USENIX Association, 753–770. https:
//www.usenix.org/conference/usenixsecurity20/presentation/schwarz

[51] Latanya Sweeney. 2000. Simple demographics often identify people uniquely.
Health (San Francisco) 671, 2000 (2000), 1–34.

[52] Yubico. 2021. Losing Your YubiKey - Yubico. https://support.yubico.com/hc/en-
us/articles/360013647620-Losing-Your-YubiKey

[53] Yubico. 2022. Spare YubiKeys. https://www.yubico.com/spare/
[54] Yubico. 2022. WebAuthn - Account Recovery. https://developers.yubico.com/

WebAuthn/WebAuthn_Developer_Guide/Account_Recovery.html

14

https://www.calctopia.com/2020/02/14/standardized-digital-identity-on-national-identity-cards/
https://www.calctopia.com/2020/02/14/standardized-digital-identity-on-national-identity-cards/
https://www.thalesgroup.com/en/markets/digital-identity-and-security/government/identity/2016-national-id-card-trends
https://www.thalesgroup.com/en/markets/digital-identity-and-security/government/identity/2016-national-id-card-trends
https://www.thalesgroup.com/en/markets/digital-identity-and-security/government/identity/2016-national-id-card-trends
https://www.ssa.gov/oact/babynames/limits.html
https://www.ssa.gov/oact/babynames/limits.html
https://www.thalesgroup.com/en/markets/digital-identity-and-security/government/passport/electronic-passport-trends
https://www.thalesgroup.com/en/markets/digital-identity-and-security/government/passport/electronic-passport-trends
https://www.thalesgroup.com/en/markets/digital-identity-and-security/government/passport/electronic-passport-trends
https://source.android.com/security/keystore
https://fidoalliance.org/wp-content/uploads/2020/04/FIDO-deploying-FIDO2-eIDAS-QTSPs-eID-schemes-white-paper.pdf
https://fidoalliance.org/wp-content/uploads/2020/04/FIDO-deploying-FIDO2-eIDAS-QTSPs-eID-schemes-white-paper.pdf
https://fidoalliance.org/wp-content/uploads/2020/04/FIDO-deploying-FIDO2-eIDAS-QTSPs-eID-schemes-white-paper.pdf
https://fidoalliance.org/specs/common-specs/fido-security-ref-v2.1-rd-20210525.html
https://fidoalliance.org/specs/common-specs/fido-security-ref-v2.1-rd-20210525.html
https://media.fidoalliance.org/wp-content/uploads/2022/03/FIDO-White-Paper-Choosing-FIDO-Authenticators-for-Enterprise-Use-Cases-RD10-2022.03.01.pdf
https://media.fidoalliance.org/wp-content/uploads/2022/03/FIDO-White-Paper-Choosing-FIDO-Authenticators-for-Enterprise-Use-Cases-RD10-2022.03.01.pdf
https://media.fidoalliance.org/wp-content/uploads/2022/03/FIDO-White-Paper-Choosing-FIDO-Authenticators-for-Enterprise-Use-Cases-RD10-2022.03.01.pdf
https://www.usenix.org/conference/usenixsecurity21/presentation/bahmani
https://www.usenix.org/conference/usenixsecurity21/presentation/bahmani
https://www.biometricupdate.com/202006/apple-launches-web-authentication-using-fido-standard-with-touch-id-or-face-id-biometrics-in-safari
https://www.biometricupdate.com/202006/apple-launches-web-authentication-using-fido-standard-with-touch-id-or-face-id-biometrics-in-safari
https://www.biometricupdate.com/202006/apple-launches-web-authentication-using-fido-standard-with-touch-id-or-face-id-biometrics-in-safari
https://github.com/intel/linux-sgx
https://download.01.org/intel-sgx/sgx-dcap/1.14/linux/docs/DCAP_ECDSA_Orientation.pdf
https://download.01.org/intel-sgx/sgx-dcap/1.14/linux/docs/DCAP_ECDSA_Orientation.pdf
https://www.usenix.org/conference/usenixsecurity20/presentation/dessouky
https://www.usenix.org/conference/13th-usenix-security-symposium/tor-second-generation-onion-router
https://www.usenix.org/conference/13th-usenix-security-symposium/tor-second-generation-onion-router
https://frankmorgner.github.io/openpace/
https://frankmorgner.github.io/openpace/
https://doi.org/10.1007/978-3-030-66504-3_8
https://ia.cr/2022/084
https://www.interpol.int/content/download/12470/file/I-Checkit_FAQs_brochure_private%20sector_EN_LR_02.pdf?inLanguage=eng-GB
https://www.interpol.int/content/download/12470/file/I-Checkit_FAQs_brochure_private%20sector_EN_LR_02.pdf?inLanguage=eng-GB
https://android-developers.googleblog.com/2018/10/android-protected-confirmation.html
https://android-developers.googleblog.com/2018/10/android-protected-confirmation.html
https://www.ausweisapp.bund.de/mobile-geraete
https://www.ausweisapp.bund.de/mobile-geraete
https://arxiv.org/abs/1801.05863
http://arxiv.org/abs/1801.05863
https://github.com/duo-labs/webauthn.io
https://webauthn.io/
https://webauthn.io/
https://www.ndss-symposium.org/ndss-paper/on-the-insecurity-of-sms-one-time-password-messages-against-local-attackers-in-modern-mobile-devices/
https://www.ndss-symposium.org/ndss-paper/on-the-insecurity-of-sms-one-time-password-messages-against-local-attackers-in-modern-mobile-devices/
https://www.bluebite.com/nfc/android-nfc-compatibility
https://www.nfcw.com/2019/06/07/362943/confirmed-ios-13-to-include-support-for-nfc-passport-reading/
https://www.nfcw.com/2019/06/07/362943/confirmed-ios-13-to-include-support-for-nfc-passport-reading/
https://www.w3.org/TR/2021/REC-webauthn-2-20210408/
https://jmrtd.org/
https://www.usenix.org/conference/atc18/presentation/oleksenko
https://www.icao.int/publications/documents/9303_p11_cons_en.pdf
https://www.icao.int/publications/Documents/9303_p3_cons_en.pdf
https://www.usenix.org/conference/usenixsecurity20/presentation/schwarz
https://www.usenix.org/conference/usenixsecurity20/presentation/schwarz
https://support.yubico.com/hc/en-us/articles/360013647620-Losing-Your-YubiKey
https://support.yubico.com/hc/en-us/articles/360013647620-Losing-Your-YubiKey
https://www.yubico.com/spare/
https://developers.yubico.com/WebAuthn/WebAuthn_Developer_Guide/Account_Recovery.html
https://developers.yubico.com/WebAuthn/WebAuthn_Developer_Guide/Account_Recovery.html

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 FIDO2
	2.2 eIDs for Authentication

	3 FeIDo: Design Goals and Threats
	3.1 Goals and Requirements
	3.2 Threat Model

	4 FeIDo: Concepts and Design
	4.1 Big Picture
	4.2 Comparison to Existing Authenticators
	4.3 Attribute-based Credentials
	4.4 Anonymous Credential Extension
	4.5 FIDO2 Integration
	4.6 Deployment and Failover

	5 Security Analysis
	5.1 FeIDo's FIDO2 Security
	5.2 Security Assumption Verification
	5.3 FeIDo Component Theft (or Loss)
	5.4 Security of Anonymous Credentials

	6 Evaluation
	6.1 Prototype
	6.2 Performance Evaluation

	7 Discussion
	7.1 FeIDo as Sole Authenticator (Passwordless)
	7.2 Enterprise Authentication Use Cases
	7.3 eID Migration on Attribute Changes

	8 Conclusion
	References

