
SENG, the SGX-Enforcing Network Gateway:
Authorizing Communication from Shielded Clients

Fabian Schwarz
CISPA Helmholtz Center for

Information Security
schwarz.fabianfrank@gmail.com

Christian Rossow
CISPA Helmholtz Center for

Information Security
rossow@cispa.de

Abstract
Network administrators face a security-critical dilemma.
While they want to tightly contain their hosts, they usually
have to relax firewall policies to support a large variety of
applications. However, liberal policies like this enable data
exfiltration by unknown (and untrusted) client applications.
An inability to attribute communication accurately and reli-
ably to applications is at the heart of this problem. Firewall
policies are restricted to coarse-grained features that are easy
to evade and mimic, such as protocols or port numbers.

We present SENG, a network gateway that enables firewalls
to reliably attribute traffic to an application. SENG shields
an application in an SGX-tailored LibOS and transparently
establishes an attestation-based DTLS channel between the
SGX enclave and the central network gateway. Consequently,
administrators can perfectly attribute traffic to its originating
application, and thereby enforce fine-grained per-application
communication policies at a central firewall. Our prototype
implementation demonstrates that SENG (i) allows adminis-
trators to readily use their favorite firewall to enforce network
policies on a certified per-application basis and (ii) prevents
local system-level attackers from interfering with the shielded
application’s communication.

1 Introduction

Companies and sovereign institutions aggregate increasing
amounts of sensitive digital information, while the number
of attacks on them is proliferating steadily at the same time.
Attackers regularly infiltrate systems to steal information and
disrupt competitors, e.g., using social engineering (phishing)
or advanced exploits (watering hole, zero days) [18]. As a
response, organizations harden endpoints, deploy network-
based attack detection systems, and train their employees. Yet,
given the abundance and power of attacks, preventing any kind
of information leakage has become practically infeasible, even
in highly-secure settings and in absence of internal attackers.

Foremost among these problems is the fact that containing
an organization’s incoming and outgoing communication is

almost impossible. On the one hand, network administrators
deploy firewalls and Intrusion Detection Systems (IDS) to
tightly control and contain information flows. On the other
hand, they have to support a vast diversity of applications
and access methods and lack a mapping between which ap-
plication causes which traffic. This enables internal clients
to (possibly unknowingly) leak data by executing untrusted
or even malicious software. Furthermore, companies opening
their servers to partners lack control over which remote client
applications are used to access these servers.

One fundamental solution to this problem is a certified attri-
bution of network traffic to its application, which would allow
for app-specific communication policies. Existing attempts to
attribute traffic fall short in their security guarantees, as they
(i) rely on protocol identification and thereby can be evaded
by traffic morphing [24], (ii) rely on host-based sensors that
can be evaded or manipulated by local attackers, or (iii) are
host-based only and cannot be used at central perimeter fire-
walls. In fact, reliable traffic-to-app attribution is challenging,
as attackers can inject code into trusted processes [4] and
abuse their identity. For example, if malware injects itself into
browsers, it hides its functionality within an otherwise trusted
process and thus inherits the browser’s identity and privileges.
Lacking a hardware-based trust anchor, existing attribution
attempts can be fooled by system-level attackers.

To tackle this underlying core problem, we require a de-
sign that (i) shields processes from system-level attackers
and (ii) gives stronger integrity protection of processes than
just their name or any sort of other loose identifier. In fact,
trusted execution environments (TEEs) like Intel SGX [13]
ensure such hardware-enforced protections and have been the
subject of endeavors to shield client applications [23, 31] and
outsourced network services [7,45,57]. Library operating sys-
tems (LibOSes) tailored for SGX wrap and shield unmodified
client and server applications, thus protecting legacy applica-
tions out of the box [2, 5, 9]. However, while they do enable
transparent shielding and attestation, existing LibOSes fail
to provide the following two guarantees. First, they rely on
the untrusted host’s network stack, s.t. local system-level ad-

1

https://orcid.org/0000-0002-8549-3881

versaries can still manipulate and redirect traffic (e.g., DNS
spoofing, IP/TCP header modification). Second, the network
gateway is still entirely blind to the concrete application which
is sending and/or receiving data. Gateways can therefore nei-
ther block unauthenticated, vulnerable senders (e.g., malware,
shadow IT) nor restrict communication with security-critical
servers to certain trusted client applications.

In this paper, we present SENG, a network gateway service
coupled with a client-side runtime library, which aims to solve
the above problems. SENG transparently protects the connec-
tions of applications that are shielded in an SGX-tailored
LibOS to prevent packet manipulation and redirection attacks
by local system-level attackers. Technically, SENG automat-
ically establishes attestation-based, trusted DTLS channels
between the SGX enclaves and the central network gateway.
Traffic from and to an enclave is wrapped in the respective se-
cure tunnel and thus inherits enclave-to-gateway confidential-
ity and integrity guarantees. Furthermore, this design allows
the gateway to link traffic to the trusted application causing
it. Consequently, the gateway can distinguish between traffic
from shielded and unshielded applications and can ultimately
enforce central fine-grained per-application policies. We have
designed SENG in such a way that shielded apps are wrapped
in an SGX-based LibOS without requiring any modifications.
This allows us to shield legacy binaries without source code
changes and completely independent of the underlying net-
work protocols. We also provide an alternative SENG design,
which operates without LibOS and provides SENG support
for enclaves based on Intel’s SGX SDK [25] instead. While
the latter does require application modifications, it outper-
forms the LibOS variant in terms of performance.

To demonstrate the general feasibility, we have developed
SENG in an open-source (cf. Section 12) C++ prototype
based on Graphene-SGX [9]. Our proof-of-concept illustrates
the security benefits of an SGX-enforcing gateway. To high-
light the two most important merits, SENG (i) allows network
administrators to readily use their favorite firewall implemen-
tation (e.g., Netfilter/iptables [40]) to enforce network
policies on a certified per-application basis and (ii) prevents
local system-level attackers from interfering with the shielded
application’s communication.

In summary, we make the following contributions:

• We design SENG, which transparently (i.e., without the
need of code rewriting) shields applications to protect
and attribute their network traffic.

• SENG enables tight control over network communica-
tion at the perimeter and thereby mitigates information
leakage by untrusted applications. Consequently, cen-
tral firewalls can enforce the use of particular trusted
applications for traffic entering or leaving their network.

• We implement and release a prototype and thoroughly
evaluate its performance based on network- and mi-
crobenchmarks as well as a set of real-world client
(cURL, Telnet) and server (NGINX) applications.

2 Threat Model

Centralized network firewalls (“perimeter firewalls”) are a
core security instrument in any network [19]. Network ad-
ministrators typically segment clients and servers into dis-
joint subnetworks that are interconnected via a central net-
work gateway—a classical demilitarized zone (DMZ) firewall
setup, as shown in Figure 1. They can then specify firewall
policies based on source and destination addresses and pro-
tocol information to regulate communication between these
segments. To retain security guarantees of perimeter firewalls,
administrators usually aim to prohibit secondary WAN con-
nections (e.g., 4G/5G) or other bridges that would subvert the
gateway’s centralized position.

Unfortunately, perimeter firewalls are restricted to coarse-
grained policies. They filter traffic based on host information
(IP addresses, port number) and transport protocol (e.g., TCP
or UDP). Firewalls cannot filter communication per applica-
tion, as the application source is unknown. Firewalls therefore
lack mechanisms to block communication of undesired and/or
potentially malicious software. Firewalls have been extended
to learn about client programs using host-based sensors [11].
However, these existing app attributions can be undermined
when attackers compromise client systems (cf. Section 3), as
malware can inject into allowlisted processes [4], or escalate
its privileges to subvert host sensors.

This challenging setting is exactly our use case. We aim
to provide app-grained traffic attribution to organizations
with stationary clients that are potentially compromised by
malware and/or want to isolate untrusted apps. Identical to
the firewall setting (“bastion host”), also in our threat model
the firewall and its underlying system is fully trusted. In con-
trast to firewalls, however, we tolerate a system-level attacker
fully controlling the client’s software stack, including its OS
and hypervisor(s). That is, we do not mistrust the user or its
hardware, but allow its host system to be fully compromised.
After compromise, attackers will attempt to leak sensitive host
information either directly or indirectly by manipulating the
network traffic of shielded applications.1

To tackle this problem, we leverage trusted hardware to en-
able firewalls to rely on app identifications for network traffic.
Technically, we shield client apps inside an Intel SGX enclave
with a trusted LibOS. Administrators can then maintain a
list of trusted apps and use their identifiers to create firewall
policies that govern which network resources a given app can
access. For ease of discussion, we protect client systems and
assume that internal servers are not compromised, while our
methodology can also be applied to servers in principle.

For our work, we follow the classical SGX threat model.
Denial-of-Service (DoS), side-channel attacks, and physical
attacks against the CPU are out of scope [35, 58, 59] and
can be tackled by orthogonal work [1, 41, 49, 54]. Similarly,

1We refer to related work to mitigate covert channels [8, 60] and focus on
stopping explicit and malicious information exchange instead.

2

Trusted GW

External Client

Enterprise Network External Network (Internet)

Untrusted
Clients
SENG

Internal
Servers

SENG

Untrusted Client Subnetwork

DMZ / Trusted Server Subnet

External Servers

MITM
MITM

:trusted :untrusted

SENG Server

Figure 1: Overview of Network Topology and Threat Model

enclaves are trusted and free of vulnerabilities. Any disk I/O
by the application has to be protected (e.g., hashing files and
transparent sealing as provided by existing file system shields
and SDK functions [2, 9, 25]). Finally, we assume that all
locally exposed enclave interfaces are shielded [55] to avoid
an oracle-like API access that could be abused for information
leaks based on confused deputy attacks.

3 Related Work

Table 1 summarizes related work and its deficiencies to
cope with our threat model. For the discussion, we consider
the following attackers: (a) user-space malware (MWuser),
(b) system-level attackers at the client (Syscli) or middlebox
(Sysmbox), and (c) on-path MITM attackers (mitm). The last
four columns rate if an approach fulfills (yes: , no: , n/a: -)
the following requirements: (i) Confidentiality and integrity
(C+I) of client traffic (incl. IP headers and DNS queries),
(ii) traffic authentication (TA) of either protected client or host
sensor traffic, (iii) secure (client) traffic-to-app attribution
(Attr), and (iv) protection against information leakage (¬IL)—
defined as security requirements SR2–SR6 in Section 5.

Perimeter Firewalls with Host Information. Perimeter
firewalls with client-side sensors are most related to SENG.
However, they fail to provide reliable traffic-to-app attribution
(Attr:), which is our central design goal. Host sensors like
the Cisco Network Visibility Module (NVM) [11] focus on
firewall augmentation with per-flow host data, including app
identifiers (e.g., hash of binary, process name). Unfortunately,
malware can easily bypass such loose, static identifiers by
injection into benign processes [4]. Furthermore, a system-
level attacker can completely subvert host sensors such as
NVM, as they fully rely on the OS. SOCKS [52] proxies and
VPN [15] services also control traffic centrally, but, similarly,
they cannot reliably link traffic to its applications.

Isolation-Based Traffic Auditing. Assayer [43] uses a
client-side hypervisor to augment app-level data of outbound
client traffic with traffic statistics and signs it (C+I: ,TA:).

However, Assayer has no insights into the app identities of
annotated traffic (no introspection) and cannot prevent in-
fected or malicious apps from submitting arbitrary traffic for
annotation. Thus, Assayer can neither provide traffic-to-app
attribution (Attr:) nor prevent leaks by malware (¬IL:).

Alcatraz [3] establishes secure tunnels between SGX en-
claves integrated into network nodes (incl. clients and gate-
way). Traffic is securely tunneled between enclaves with hop-
specific keys to provide traffic confidentiality and integrity
as well as path integrity. While Alcatraz shields tunneled IP
traffic from MITM attackers and compromised switches, Alca-
traz doesn’t protect traffic against client compromise (C+I:).
Therefore, Alcatraz’s client enclaves cannot link traffic to
apps (Attr:) and do not restrict access to the tunnel, s.t. local
attackers can send arbitrary authenticated IP packets (¬IL:).

EndBox [22] outsources middlebox services to untrusted
client systems for scalability. EndBox runs inside an SGX
enclave and tunnels all app traffic through a VPN connection
(C+I:) to the gateway, which blocks traffic that does not
arrive through the enclave-terminated VPN tunnel (TA:).
However, similar to Alcatraz, EndBox cannot enforce app-
grained policies (Attr:), as all client apps are untrusted.

Container overlay networks like Slim OS [61] or Docker-
based networks [14] assign virtual IP addresses to containers
enabling per-container firewall policies at virtual switches.
However, they cannot protect against system-level attackers,
as they trust the client OS, have no HW-based container iden-
tifiers, and do not deal with information leakage.

Client-side Solutions with Host-level Firewalls. Host-
based firewalls enforce policies directly at the client host, but
do not provide an enterprise-wide decision and enforcement
point. They are often combined with compartmentalization
frameworks which confine apps in sandboxes to mitigate
system compromises, which lead to direct firewall subversion.

For example, iptables [40] is the de facto standard firewall
configuration tool in Linux. A Debian extension allows poli-
cies per user and process ID [27], while mandatory access
control (MAC) modules [51, 56] allow fine-grained policies
(incl. app-grained). However, none of these approaches shares
data with a central gateway firewall. While some firewalls
support labeled IPsec, which can negotiate MAC contexts as
traffic selectors [28], labeled IPsec faces major configuration
and key management complexity. ClipOS [12] is a hardened
Linux which sandboxes apps and plans to include multi-level
compartmentalization support. However, system-level attack-
ers can subvert all aforementioned approaches.

QubesOS [48] uses Xen to sandbox all apps into isolated
VMs and provides per-app VM network policies. QubesOS
could thus be modeled to enable app-grained, central policy
enforcement by setting up separate VPN tunnels for each
application VM and enforce rules on the unique per-app VPN
IP addresses. However, this would require a complex client
setup and requires trust in the hypervisor. In contrast, we
want to root our app attribution in hardware and stay fully

3

Trust in... (SR2/3) (SR4) (SR5) (SR6)
Project Components at... OS VMM CPU Attackers Central? C+I TA Attr ¬IL
SENG Client, Gateway no no ✓ Syscli, mitm yes
NVM et al. Client, Gateway yes - ✓ MWuser yes -
Assayer Client, MBox, Srv no yes ✓ Syscli, mitm yes
Alcatraz Cli/Srv, MBox, Gw no no ✓ Syscli+mbox, mitm yes
EndBox Client, Gateway no no ✓ Syscli, mitm yes
iptables MAC Client yes - ✓ MWuser no -
ClipOS Client yes - ✓ MWuser, mitm no -
QubesOS Client no* yes ✓ Syscli, mitm no -
SafeBricks Gateway, MBox yes yes ✓ Sysmbox, mitm yes - - -
LightBox Gateway, MBox yes yes ✓ Sysmbox, mitm yes - - -

Table 1: Related work grouped into perimeter firewalls with host sensors, host-level firewalls, and secure middleboxes. Assess-
ments follow the metrics, symbols and acronyms outlined in Section 3. (*note: QubesOS trusts OS of admin dom0, though)

compatible with existing gateway firewalls.
SGX-Protected Middlebox Outsourcing. Projects such

as SafeBricks [45], LightBox [16] and ShieldBox [57] use
SGX to protect middlebox services from untrusted cloud or
middlebox providers. The approaches mostly differ w.r.t. the
focus and implementation. SafeBricks, for instance, uses
language-based methods to enforce least privilege on third
party middlebox functions and isolation across chained func-
tions, while LightBox [16] focuses on support for stateful
full-stack middlebox functions and high-performance. Gkant-
sidis et al. [21] additionally propose a middlebox-aware TLS
variant (mbTLS) for secure inspection of encrypted client
traffic. In contrast to our threat model, these projects trust
the client hosts, and thus fail to provide app-to-traffic attri-
bution (Attr:-) and to mitigate information leakage (¬IL:-).
The middleboxes can directly benefit from our desired traffic
attribution, as they integrate easily (cf. AR3 in Section 5.1).

4 Background

Intel SGX and Remote Attestation. TEEs provide an ab-
straction to run a process isolated from the remaining system.
TEEs enforce hardware-based protection of the integrity and
confidentiality of the contained code and data and have means
to prove it to external entities [13, 44].

In the following, we focus on Intel SGX, which forms the
basis for our overall design. SGX’s TEE entities are enclaves,
which only rely on the security of the CPU. Enclaves pro-
vide a dedicated memory region called enclave page cache
(EPC) which is isolated and transparently encrypted and au-
thenticated. The enclave app code is limited to user space
instructions, s.t. enclaves depend on the cooperation of the
untrusted OS for system calls and interaction with hardware
devices. Therefore, SGX provides direct access to untrusted
memory and the notion of enclave calls (ECALLs) and outside
calls (OCALLs), which allow controlled transitions between
the trusted and untrusted world. Furthermore, SGX allows to

store data encrypted on the disk via a sealing key derived by
the CPU and only accessible to the respective enclave [13].

SGX enclaves can prove their identity and protection to lo-
cal and remote entities. For local attestation, the CPU creates
a cryptographic report of the enclave, which contains a mea-
surement (secure hash) of the initial enclave state. The report
is signed by the CPU with the key of the local challenger en-
clave and can then be passed to the challenger for verification.
For remote attestation, the Intel-provided Quoting Enclave
(QE) acts as local challenger. The QE then adds the platform
state and forwards the resulting quote to a trusted remote at-
testation service, e.g., Intel Attestation Service (IAS), which
checks the platform validity and returns a signed attestation re-
port. Enclaves can bind user data (e.g., keys) to the attestation
by embedding custom data into their reports [13, 32].

Enclave Development and Graphene-SGX. There are
at least three major paradigms to develop TEE-enabled pro-
grams. First, applications can be explicitly designed for cer-
tain TEEs by using SDKs [25], which abstract the implementa-
tion details. SDKs usually provide APIs for attestation and in-
teractions with the untrusted OS, e.g., for sealing files to disk.
Second, semi-automated approaches rely on compiler support
and developer-provided source code annotations to split code
and data into sensitive and non-sensitive parts. The sensitive
parts are then moved inside the isolated enclave and connected
to the untrusted parts via shielding layers [37, 55]. Finally,
as a third approach, SGX library operating systems securely
execute unmodified applications inside enclaves [2, 5, 9, 53].
Due to the user space restriction of enclaves, these LibOSes
handle system calls on behalf of the apps and transparently
provide POSIX abstractions, e.g., multi-threading support. As
the underlying OS is untrusted, the frameworks aim to shield
system calls against so-called Iago attacks [10], in which
the untrusted operating system manipulates system calls and
their return values. However, while LibOSes typically pro-
vide shielding layers for secure disk I/O and file integrity, they
do not protect network traffic and rely on the untrusted host

4

network stack. While SCONE [2] includes transparent TLS
proxy support for server apps, it fails to protect client traffic
and DNS—both essential requirements of SENG.

In our design, we will follow the third approach, and use
the Graphene-SGX LibOS, which is open source and allows
us to transparently execute unmodified applications in SGX
enclaves [9]. Graphene-SGX transparently emulates some
system calls internally, while others are delegated to the un-
trusted OS. A manifest file specifies the enclave size and
number of threads, as well as the application and correspond-
ing dependencies that Graphene-SGX shields. The manifest
is part of the enclave identity for attesting the shielded appli-
cation. While Graphene-SGX provides multi-threading and a
file system shield, it provides no secure network I/O for apps.

5 Design

5.1 Requirements
SENG’s high-level goals are twofold: (i) prevent attacks
against the traffic of SGX-shielded clients, and (ii) allow a
central gateway to govern network access on a per-application
basis. From these, we derive six security (SR) and three auxil-
iary (AR) requirements of our system, as shown next. These
requirements hold equally for internal and external shielded
clients. Five of these requirements (SR2–SR6) heavily rely
on the new concepts introduced by our design.

SR1 Code and Data Protection During execution, the in-
tegrity and confidentiality of client code (binary, libs)
and data (including files) must be protected.

SR2 Network Traffic Integrity and Confidentiality The
integrity and confidentiality of network traffic between
shielded apps and the gateway is guaranteed, which
holds true both for internal and external clients.

SR3 Redirection Prevention Traffic from shielded clients
must be protected against packet header manipulation
by local system-level or on-path MITM attackers until it
passes the gateway. Furthermore, local and on-path DNS
redirection attacks must be prevented.

SR4 Protection-based Traffic Authentication The gate-
way must be able to distinguish between traffic of
shielded applications and that of non-shielded ones.
This property enables network policies that restrict the
access to sensitive subnetworks to shielded apps only.

SR5 Accountability of Shielded Traffic The gateway must
be able to link shielded traffic back to the respective
shielded application to enforce per-app network policies.

SR6 Information Leakage and Remote Control Prevention
Whenever SENG enforces that only shielded clients
may communicate, local system-level and internal
MITM attackers must not be able to leak information
to external systems. In the opposite direction, attackers
must not be able to send information (e.g., malware

commands) from the outside to compromised clients.
AR1 No Client Code Changes. To ease adoption and to

support closed-source and legacy applications, we seek
for a solution that does not require any code changes in
the client app and its dependencies.

AR2 Scalability of Gateway Server The overhead intro-
duced to the gateway server per shielded app and per
network connection must be low to allow for scaling.

AR3 Compatibility with other Gateway Services The
protection and authentication techniques used by SENG
should not interfere with other services on the network
gateway, such as middleboxes or firewalls.

5.2 Overview

We now provide an overview of the SENG architecture and
explain how SENG shields network traffic of unmodified
client applications and enables app-grained traffic control.

The SENG architecture consists of two main components:
(i) a client-side shielding runtime, and (ii) a SENG server
located at the gateway. Figure 2 provides an overview of
the SENG components and communication channels. On the
client side, the SENG runtime wraps a client application in
a library OS (LibOS) and combines both in an SGX enclave.
The dedicated SENG server is located at the central network
gateway. It cooperates with the firewall and the SENG runtime
instances to attribute and protect traffic of the shielded apps.

On the client, the LibOS and SENG runtime transparently
shield the client applications from local system-level attack-
ers. To this end, the LibOS loads and executes unmodified
binary applications inside a hardware-protected SGX enclave.
The LibOS transparently handles system calls of the app and
shields them against Iago attacks [10] of the untrusted OS.
For instance, the LibOS prepares its own file system to protect
against disk I/O tampering. The SENG runtime adds to this in
that it protects network I/O of shielded apps and establishes
trust with the SENG server. Technically, the SENG runtime in-
corporates a lightweight user space TCP/IP stack to cope with
the lack of trust in the host’s network stack. This user-space
network stack manages the app’s connections inside SGX and
enables secure tunneling of whole IP packets—including the
network and transport headers–to the SENG server.

The SENG server has to authenticate client apps and se-
curely forward shielded traffic between SENG runtime and
gateway. The SENG runtime and server establish an attested,
secure communication channel to tunnel traffic. The SENG
server listens for incoming tunnel connections from shielded
and trusted client apps. We use SGX’s remote attestation to
check the app’s identity and verify that it runs inside a valid
SGX enclave with SENG runtime. To this end, the SENG
runtime generates a fresh public and private key pair and
binds it to the enclave report—inspired by work of Knauth
et al. [32]. The SENG runtime then uses the keys to establish
a mutually authenticated, end-to-end protected connection to

5

Gateway
F
i
r
e

w
a
l
l

Firewall

SENG
Server

Enterprise Network External Network (Internet)

Infected Client

Malware

Untrusted Client Subnetwork

DMZ / Trusted Server Subnet

External Servers

MITM

SENG
Runtime LibOS

Shielded
Application attested

tunnel

malicious
traffic

MITM

Firewall

F
i
r
e

w
a
l
l

SGX Enclave

:trusted :untrusted:trusted :untrusted

Infected
Client

attested
tunnel

Figure 2: High-level Overview of the SENG Architecture

the SENG server and provides the attestation report during
connection setup. Before accepting the connection, the SENG
server checks that the attestation report is bound to the con-
nection and belongs to a valid SGX enclave with a shielded
application. After tunnel establishment, traffic of the shielded
app can be securely tunneled to the SENG server and routed
through the gateway (incl. firewall) while being protected
from MITM attackers between enclave and gateway.

5.3 Application-Grained Firewall Policies
Placing the SENG server on the gateway allows for fine-
grained traffic control at the perimeter firewall. With SENG,
firewalls can precisely control which shielded app may com-
municate where. This adds a completely new degree of free-
dom that standard firewalls do not give, as they subsume all
applications of a given system into a single address.

The SENG server maintains a central allowlist of trusted
applications, which links apps to their trusted attestation re-
ports, and additionally, to an app-specific IP subnetwork. The
SENG server assigns a unique IP address from this particular
subnet to each shielded enclave instance of a given client
app. The enclave-unique addresses make the shielded app’s
identifier visible to all gateway services, including firewalls.
Firewalls use this mapping to define app-specific policies,
which are easily integrated into existing toolchains2.

To demonstrate this, we introduce a typical corporate net-
work setup, as shown in Figure 3. The network consists of a
central, SENG-enabled gateway which interconnects an un-
trusted internal client subnetwork, a trusted internal server sub-
net, a DMZ, and external networks. The DMZ provides typical
services for internal and external hosts, including a public web
shop and a DNS server. The internal servers are only reach-
able by internal clients and host an intranet web server, as
well as an LDAP and database server. The client workstations
run a set of trusted client applications (e.g., browsers, mail

2Alternatively, to ease integration, we also implemented a SENG netfilter
kernel module and iptables extension that allows to extend netfilter-based
firewalls with SENG app identifiers to avoid network fragmentation.

Trusted GW

Web
Server

Client Workstations: 10.0.0.0/8

Internal Servers: 172.16.0.0/16

Untrusted
Client

PSQL Cli

Untrusted
Client

FileZilla

Untrusted
Client

Firefox

:trusted

:untrusted

SENG Server

Demilitarized zone (DMZ): 8.8.8.0/24

External

Network

DNS
Server

FTP
Server

Mail
Server

Web
Server

switch

LDAP
Server

Database
Server

switch

.1

.2

.3

.4

.1

.2 .3 .4 .5

switchswitch

Untrusted
Client

Mail Cli

.1
.5.4.3.2

Figure 3: Sample topology of a corporate network consisting
of a SENG-enabled gateway, a subnet of untrusted clients
with shielded apps, an internal server subnet and a DMZ.

clients) which require access to internal and external servers.
The white columns in Table 2 show traditional firewall poli-
cies (e.g., configured using iptables) for this setup. Rules
1-2 allow workstations to connect to external hosts, rules 3
and 8-10 grant them connections to internal and DMZ servers,
and rules 4-7 allow external clients to connect to servers in the
DMZ. Rule 11 allows internal and DMZ servers to connect to
external servers. Rule 12 allows all communication of such
established connections, and rule 13 is the default policy that
rejects any other traffic.

If client hosts are fully compromised by a system-level at-
tacker (cf. Section 2), these traditional policies fall short. First,
they allow malware on trusted hosts to communicate to exter-
nal servers. Second, they do not refine which external clients
may use servers in the DMZ. To tackle these shortcomings,
SENG grants only trusted apps network access. The gray col-
umn in Table 2 shows the policy modifications that SENG re-
quires. Administrators just have to replace the coarse-grained
source addresses with app-grained addresses. For example,
in rule 1, the firewall can now control that only vetted Fire-
fox clients from the workstation network can access external
networks, and any untrusted software is blocked. This minor
change significantly hardens the firewall setup. The SENG-
enabled policies can be automatically derived when shielded
apps specify which endpoints they need for communication.

Subsumed Enclave Subnetworks. Optionally, network
admins can group shielded apps sharing policies (e.g., all
mail clients, or versions of same app) into privilege-based
subnets. Table 2 exemplifies both cases: While rule 3 restricts
access to an individual mail client version, rule 6 subsumes all
FileZilla versions in a subnet. Rule 2 even restricts access to
external databases only to PSQL clients configured with SSL
mode enabled to protect against external MITM attackers.

Host IP Addresses. We override the source IP address
with an enclave-unique address to easily integrate SENG into

6

No. Source (w/o SENG) Source (with SENG) Destination Dst. Port State Action
1 $WORKSTATIONS $WS_FIREFOX_72 $EXTERNAL 80, 443 NEW ACCEPT
2 $WORKSTATIONS $WS_PSQL_TLS_ONLY $EXTERNAL 5432 NEW ACCEPT

$IMAP 143, 993 NEW ACCEPT3 * $ANY_THUNDERBIRD_68 $SMTP 465, 587 NEW ACCEPT
4 $EXTERNAL $EXTERNAL $SMTP 25 NEW ACCEPT
5 * * $DNS 53 NEW ACCEPT
6 * $ANY_FILEZILLA $FTPS 989, 990 NEW ACCEPT
7 * * $WEBSHOP 80, 443 NEW ACCEPT
8 $WORKSTATIONS $WS_FIREFOX_72 $INTRANET 80, 443 NEW ACCEPT
9 $WORKSTATIONS $WS_PSQL $DATABASE 5432 NEW ACCEPT

10 $WORKSTATIONS $WS_ENCLAVES $LDAP 389, 636 NEW ACCEPT
11 $SERVERS $SERVERS $EXTERNAL * NEW ACCEPT
12 * * * * ESTABL. ACCEPT
13 * * * * * REJECT

Table 2: Traditional firewall policies for the corporate sample network (Fig. 3) and their app-grained SENG alternatives (gray
column). The variables in column 2 and 4 represent subnets (e.g., $WORKSTATIONS) or server IP addresses (e.g., $IMAP). The
new variables in the gray column represent SENG enclave subnets ($WS for workstations, $ANY for arbitrary IP addresses).

existing firewalls (AR3). Note that the SENG server can still
distinguish between enclaves running on different hosts and
between enclaves running on different subnets. While rule 6
grants internal and external FileZilla enclaves access to the
FTP server (DMZ), rule 8 restricts access to intranet web
pages to shielded browsers on internal workstations only.

5.4 Deployment of SENG
SENG raises questions regarding enclave deployment, key
management and update handling, which we discuss next.

Enclave Deployment. The SENG runtime and its depen-
dencies are shipped to clients as a container image. Each
shielded app needs a configuration file that lists the files the
LibOS has to protect, which can be (partially) automated3.
App bundles can then be offered, e.g., via corporate app stores.

New SENG client devices are enrolled by including their
addresses in the SENG policy database. Strong device bind-
ings can optionally be established using orthogonal schemes
such as IEEE 802.1X and strict mappings between hosts and
IP addresses. Alternatively, one could bind a secret to the
client CPU as part of the app installation process.

Mixed Environments / Gradual Deployment. SENG can
also be deployed in mixed environments, i.e., heterogeneous
networks where not all hosts support SGX (and thus SENG).
In this case, administrators can use network segmentation to
separate SGX-enabled workstations from legacy workstations.
Whereas the unprotected subnetwork of legacy clients would
be governed by traditional (and possibly more restrictive)
firewall rules, the protected network could readily use SENG
policies. In fact, given a particular workstation, this setup also

3e.g., using https://github.com/oscarlab/graphene/tree/v1.0.
1/Tools, or an automated build chain for container generation [2]

allows to gradually migrate applications to SENG. Shielded
apps would belong to the protected subnetwork, whereas all
other legacy clients are bound to the unprotected subnetwork.

Key Management. SENG requires minimal key manage-
ment. The SENG server authenticates clients via remote at-
testation and the client key pair (Kenc,K−1

enc) is generated on
each startup, s.t. no key rollouts are required. The key pair of
the SENG server (Ksrv,K−1

srv) must be securely managed and
the public key Ksrv is shipped to clients as part of the SENG
runtime. See Section 7 for respective security considerations.

Component Updates. On each component update
(incl. keys, app, libs, SENG and LibOS), the SENG runtime
image is rebuilt, and a new attestation report is extracted
and inserted into the allowlist. Thus, SENG can identify the
exact software bundle of a given enclave (cf. Section 6.1)
and allow, e.g., only specific app versions (Table 2, rule 1)—
mitigating the risk of outdated software that exposes security
vulnerabilities. While SENG provides new reports on each
update, LibOSes commonly support dynamic loading [5, 9],
s.t. SENG needs to reship only the modified files, the (small)
configuration and new enclave signature.

Critical Updates and Key Rollovers. In case of critical
security updates, the compromised reports must be removed
from the allowlist to revoke network access. SENG can op-
tionally terminate all established tunnels of such revoked apps,
immediately disconnecting revoked apps from other network
segments. A special case is the update of SENG’s server
key pair (Ksrv,K−1

srv) as part of a periodic or emergency key
rollover. As the public key Ksrv is pinned by each shielded
app and part of their attestation, every app report changes
and has to be revoked. However, note that when using a tun-
nel cipher with (perfect) forward secrecy, their session keys
are unaffected by a server key breach (K−1

srv). Thus, all estab-

7

https://github.com/oscarlab/graphene/tree/v1.0.1/Tools
https://github.com/oscarlab/graphene/tree/v1.0.1/Tools

lished tunnels and associated app connections can continue
operation (Table 2, rule 12).

6 Implementation

We now provide the details of the SENG architecture in
chronological order of the shielded app’s communication.
That is, we first detail the setup phase, then how the app’s
network traffic is protected, and finally, how the perimeter
firewall enforces app-grained communication policies.

6.1 Initialization and Tunnel Setup
Initialization Phase. Before the SENG runtime can protect
a client application, the SGX enclave must be set up. SENG
uses the Graphene-SGX LibOS [9], as it supports dynamic
loading of unmodified, multi-threaded Linux apps and shields
system calls. First, Graphene-SGX sets up an SGX enclave
and initializes the shielding layers. After finishing the setup,
but before loading the application, the SENG runtime loader
is called and launches a dedicated enclave thread for the user
space TCP/IP stack and for the tunnel module. The TCP/IP
stack is instantiated with the embedded lwIP stack [38], as
it is lightweight and modular by design. The tunnel module
manages the tunnel to the SENG server and registers itself as
network driver for the default interface of lwIP, s.t. lwIP routes
all IP packets of the client app through the tunnel module.

On the gateway-side, the SENG server creates a virtual IP-
level network interface which it will later use for routing traffic
of shielded apps and receiving packets destined for them.
Afterwards, the SENG server sets up a welcome socket and
waits for incoming tunnel connections by internal or external
SENG runtime instances.

Tunnel Preparation. After initialization, the SENG run-
time generates credentials and the enclave report for the se-
cure tunnel to the SENG server. The tunnel module uses
DTLS (RFC 6347), which has well-documented end-to-end
protection guarantees. We chose UDP-based DTLS over TLS
as it requires less state and is faster, which improves scalabil-
ity, and as the reliability and ordering guarantees of TLS are
not required [20]. For tunneled TCP connections, the TCP/IP
stacks of the communication endpoints—namely SENG run-
time and target server—already guarantee reliable, in-order
packet delivery. For tunneled UDP streams, both communica-
tion partners have to resolve packet reordering in the applica-
tion protocol anyway, and the choice of DTLS thus does not
weaken any security guarantees.

To couple remote attestation with the end-to-end protection
of DTLS, the tunnel module generates a fresh RSA key pair
(Kenc,K−1

enc) and binds the public key Kenc as user data to the
enclave report—following the idea of Knauth et al. [32]. The
local Intel Quoting Enclave (QE) transforms the report into
a verifiable, signed quote using the attestation key. After re-
ceiving the signed remote attestation report via an attestation

service, the tunnel module uses the RSA keys (Kenc,K−1
enc) to

generate an X.509 client certificate and embeds the attestation
report with corresponding signature as extra fields.

Note that the tunnel module must not be able to directly
communicate with external Attestation Services, e.g., Intel
Attestation Service (IAS), to request the signed remote attes-
tation report. Local and on-path adversaries could exploit the
unprotected headers of the IAS connection as covert channel
and leak information (violating SR6). To solve this dilemma,
we can (i) let the enclave send the signed quote to the SENG
server, which in turn performs the IAS communication itself,
or (ii) operate an internal attestation service in the DMZ, and
let the enclave submit the quote to the AS via TLS [50].

Tunnel Establishment. The SENG runtime now connects
to the SENG server via a mutually authenticated DTLS con-
nection. For server authentication, the runtime uses the pinned
server public key Ksrv. For client authentication and remote at-
testation, the SENG server checks the validity and signature of
the attestation report and matches the embedded user data with
the certificate key Kenc. The SENG server then verifies if the
report data belongs to a shielded application in the allowlist.
Technically, the enclave measurement contains the Graphene-
SGX library and memory-mapped manifest: mrenclave←
measuresgx(graphene,MF). The manifest MF contains secure
hashes h(·) for all dependencies of the SENG runtime and
shielded app, including the runtime library, the pinned server
key Ksrv, the app’s binary and libraries, as well as other pro-
tected files: MF := {h(sengrt),h(Ksrv),h(app),h(lib1), ...}.
The file system shield enforces file integrity based on the
hashes [9]. The inclusion of the manifest in the measurement
results in a unique enclave identity (mrenclave) for each bun-
dle of LibOS, SENG, and client app. Therefore, the SENG
server can directly link the report to the exact version of the
shielded app. If the app was verified, the SENG server knows
that the DTLS tunnel is attested and established with a valid
SGX enclave. Finally, the SENG server looks up the app-
specific IP subnet based on the app’s identity (mrenclave) and,
optionally, host IP and assigns a unique IP address from the
subnet to the SENG runtime instance (cf. Section 5.3). The
SENG runtime takes over the reported IP configuration, and
Graphene-SGX loads the app and transfers control to it.

6.2 Network Traffic Shielding

Redirecting IP Packets to the Tunnel. SENG needs to
protect the whole network traffic of shielded applications.
Graphene-SGX links the client apps against a patched ver-
sion of the standard C library where syscalls are replaced by
calls to LibOS-internal handler functions. This allows us to
fully-transparently wrap and shield system calls. The SENG
runtime provides own handlers which shadow all network
I/O functions, as shown in Figure 4. The SENG handlers
transparently redirect all socket API functions of the client
app to the respective lwIP functions, s.t. the app can perform

8

SENG
Server

Linux Kernel

SENG Runtime
Socket

Handlers

Client Application
(binary, libs)

Kernel Space

User Space

lwIP

tunnel module SG
X

En
cl

av
eApp data

IP packets

DTLS records
SGX boundary

System calls
(incl. UDP send/recv)

:untrusted

:trusted

non-socket
APIs

Graphene-SGX

Figure 4: Overview of the SENG Runtime Components

network I/O only through the SGX-internal user space stack.
lwIP manages all connections of the app and uses the tunnel
module for receiving and sending the associated IP packets.

Sending Packets. When the shielded app sends data, lwIP
crafts corresponding IP packets and passes them to the tunnel
module. The tunnel module wraps the IP packets with DTLS
and forwards them through the attested tunnel to the SENG
server. For transferring the DTLS records, the tunnel module
uses the LibOS to perform the actual UDP send operation via
the untrusted OS. Figure 4 shows the app’s data flow and high-
lights that only the DTLS records cross the SGX boundary.
The end-to-end security protection of DTLS prevents attacks
by local or MITM attackers. The SENG server receives the
DTLS records, decrypts contained IP packets and then passes
them through the virtual network interface to the gateway
network stack. The gateway then applies app-grained firewall
rules (Section 6.4) and routes the packets to the target server.

Receiving Packets. For inbound traffic, the SENG server
receives the corresponding IP packets from the gateway
through the virtual network interface. The SENG server uses
the target address to look up the DTLS connection to the re-
spective shielded client app and tunnels them back. The tunnel
module receives and decrypts the IP packets and puts them
into the lwIP inbox queue. lwIP then processes the packets
and passes the contained app data to the shielded app.

6.3 DNS Resolution Shielding

Without further precautions, the enclave would fully rely on
the host OS to resolve domains. Local system-level attack-
ers could thus launch severe redirection attacks and redirect
traffic of shielded apps to IP addresses of their choice. To
tackle this problem, SENG shields DNS lookups of client ap-
plications via three complementary actions. First, the SENG
runtime redirects the respective standard library functions
(e.g., getaddrinfo) to lwIP and configures lwIP to use a
trusted DNS resolver located at the gateway or in the DMZ.
The trusted resolver can then securely query internal DNS
servers or contact trusted external ones via integrity-protected

DNS variants, e.g., DNSSEC, DNS over TLS (DoT) or DNS
over HTTPS (DoH)4. Second, we provide trusted versions of
configuration files used by third party DNS libraries for look-
ing up information like the name server IP (“resolv.conf”) or
protocol-specific port numbers (“/etc/services”). We leverage
the file system shield of the LibOS to protect the integrity of
the files. Third, all DNS queries sent via standard resolver
functions or third party libraries eventually pass lwIP and are
therefore tunneled through the protected DTLS tunnel.

6.4 Application-Grained Policy Enforcement
SENG enables the perimeter firewall to apply app-grained
network policies whenever shielded traffic is routed through
the gateway. App traffic reaches the gateway only through
SENG’s virtual network interface and the SENG server for-
wards traffic to an app tunnel only if it matches the assigned
enclave IP. Therefore, the gateway can identify outbound traf-
fic as shielded iff received from SENG’s network interface and
routes inbound traffic destined for enclave IPs to the SENG
server. In the process, the firewall on the gateway enforces
app-grained policies as network policies on the app-specific
enclave IP subnets (cf. Section 5.3). To prevent imperson-
ation attacks via IP spoofing, the SENG server drops tunneled
app traffic with mismatching enclave IP and the firewall drops
enclave traffic not arriving through SENG’s network interface.

6.5 Shielded Servers
So far, we took it for granted that all shielded apps are clients.
However, SENG also supports shielded server apps. SENG
server sockets work analogously to default server sockets.
However, with SENG, the gateway can now fully control (i) if
an enclave can expose server functionality, and if so, (ii) which
clients are allowed to contact the enclave. Similar to client
policies, server policies restrict communication to shielded
clients or specific enclaves only (app-grained policies).

Once created, SENG server sockets are reachable through
the gateway under the assigned enclave IPs. Recall that en-
claves can either have public (globally routable) or private
(RFC 1918) IP addresses. In case of public addresses, the en-
clave’s server socket is immediately exposed. If the enclave’s
IP is private, yet should be reachable from external clients,
the gateway uses destination NATing to expose the service.

7 Security Analysis

We now discuss how adversaries could attempt to attack
SENG. Table 3 summarizes the attacks and respective de-
fense mechanisms. We discuss why the protection from the
above adversaries implies the fulfillment of the security goals
of Subsection 5.1 and therefore solves the initial challenges.

4RFC 4033, RFC 8484 and RFC 7858

9

Target / Goal Attack Adversaries Defense Mechanisms Secure?

Shielded App
A01: Code/Data Tampering Sys SGX Enclave ✓
A02: File Tampering Sys File System Shield ✓
A03: LibOS Modification Sys Attest + Allowlist ✓

SENG’s Tunneling
and Access Control

A04: Fake/Custom Enclave Sys Attest + Pinning + Allowlist ✓
A05: Client Impersonation Sys, Mc2gw Key Binding + Traffic Auth. ✓
A06: Server Impersonation Sys, Mc2gw Pinning + DTLS ✓
A07: Attacking SENG’s Keys Sys, Mc2gw SENG’s Key Management ✓
A08: Tunnel Tampering Sys, Mc2gw DTLS + Trusted TCP/IP Stack ✓

App Connections
A09: DNS Spoofing Sys, Mc2gw, Mgw2srv SENG’s DNS Shield ✓
A10: Internal Conn. Tampering Sys, Mc2gw DTLS Tunnel + DMZ ✓
A11: External Conn. Tampering Mgw2srv (Enforce Apps w/ Sec. Comm.) (✓)

Information Leaks
and Remote Control

A12: Direct Info Leak Internal SENG’s Shielding and Policies ✓
A13: Direct Remote Control External SENG’s Shielding and Policies ✓
A14: Covert Channel (Header) Internal + External SENG’s Tunneling + DTLS ✓
A15: Covert Channel (Timing) Internal + External (Adopt Time Masking) (✓)

App Interfaces A16: Steering Shielded Apps Sys (Secure I/O + Caller IDs) (✓)
SENG’s Policies A17: Privilege Escalation Malicious Enclave Traffic Auth. + Policies ✓
Central Gateway A18: Gateway Compromise Sysgw (TEE-protected Srv+FW+NIC) (✓)

Table 3: Assessment of attacks on SENG and its respective countermeasures, following the attacker models defined in Section 7.

Adversary Types. With reference to Figure 1 (see page 3),
SENG faces several types of adversaries: (i) a system-level
attacker (“Sys”), which fully controls the enclave’s OS inter-
actions (including traffic), (ii) MITM attackers in the internal
or external client subnetwork (depending on the client’s loca-
tion), who can fully control the traffic between the client and
SENG server (“Mc2gw”), (iii) MITM attackers on the path be-
tween the gateway and the server (either internal or external)
(“Mgw2srv”), (iv) an internal attacker inside the organization
who aims to leak sensitive data (“Internal”), and finally, (v)
an external attacker outside of the organization who aims to
sneak data (or malware commands) into the network (“Ex-
ternal”). We will use these attacker models to discuss how
SENG protects against 18 security-critical attacks.

A01: Code/Data Tampering (SR1). Sys may aim to hijack
the shielded app code, tamper with the runtime data or leak
sensitive information like tunnel keys. The hardware-enforced
protection of Intel SGX blocks all unauthenticated access to
enclave memory and therefore prevents such attacks.

A02: File Tampering (SR1). Furthermore, the file system
shield uses the manifest MF to check the integrity of the
SENG runtime, pinned SENG server key Ksrv, application
binary and all its dependencies (e.g. libs, config files), such
that any attempt to tamper files is detected and blocked.

A03: LibOS Modification (SR2-4). Patching the LibOS
binary or its manifest to replace loaded files, e.g., the client
app, or the pinned SENG server key Ksrv, is possible, but
results in deviating enclave identities (mrenclave). During
remote attestation, the SENG server will thus refuse the tunnel,
as the unknown enclave is not in the allowlist.

A04: Fake/Custom Enclave (SR4). An adversary could

try to establish a tunnel to the SENG server directly, or from
within a custom enclave. As the SENG server expects a valid,
correctly-signed attestation report, it will refuse direct connec-
tions with attacker-crafted fake reports. When the adversary
contacts the SENG server from within a custom enclave,
the attestation report will be valid, but not in the allowlist.
Therefore, the SENG server will refuse the connection by the
unknown enclave as in the previous attack (A03).

A05: Client Impersonation (SR4+SR5). Attackers could
try to impersonate a trusted client application. First, attackers
could intercept an allowlisted attestation report and embed
it into their own client certificates. However, the report will
not be bound to the certificate and the SENG server will
detect the mismatch and deny access. Second, attackers could
spoof an IP from a trusted enclave subnetwork. However, the
SENG-enabled gateway can identify the non-tunneled traffic
as unauthenticated and drop the packets (see Section 6.4).

A06: Server Impersonation (SR2). The attacker can also
try to impersonate the SENG server by intercepting connec-
tion attempts. If successful, the adversary could gain access
to all connections of the shielded application, including un-
protected legacy traffic. However, the SENG runtime pins the
valid SENG server key Ksrv and checks it during the DTLS
handshake to detect such impersonation attacks.

A07: Attacking SENG Keys (SR2). SENG performs se-
cure key management to prevent multiple attacks against the
tunnel security: (i) Rollback attacks against SENG’s server
public key Ksrv do not exist, as Ksrv is not sealed to disk and is
integrity protected (A02). A rollback of the whole app bundle
(incl. Ksrv, LibOS and all dependencies) results in a depre-
cated, blocked report (A03). (ii) If a private key of the SENG

10

(or attestation) server is breached, SENG blocks all vulnerable
reports and thus enclaves with stolen keys (cf. Section 5.4).
As DTLS supports ciphers with perfect forward secrecy, es-
tablished tunnels are not affected by a breach of the SENG
server key K−1

srv . (iii) The client RSA key pair (Kenc,K−1
enc)

is freshly generated for every new enclave instance and the
private key K−1

enc never leaves the enclave, s.t. it is protected
against attackers (cf. A01).

A08: Tunnel Tampering (SR2). Tampering with estab-
lished tunnel connections is not possible, because of the end-
to-end security guarantees of DTLS. An adversary can reorder
or drop tunnel packets, which is explicitly supported by DTLS.
However, tunneled UDP connections do not expect reliable or
in-order delivery and the endpoint network stacks still ensure
reliability and ordering guarantees for TCP packets (Sec. 6.1).

A09: DNS Spoofing (SR3). An attacker can try to leak
information by redirecting connections of shielded apps via
DNS reply spoofing. SENG shields DNS traffic via multiple
complementary methods as discussed in Subsection 6.3. First,
spoofing the results of untrusted resolver functions is pre-
vented by redirecting the function calls to lwIP. Second, DNS
redirection to attacker-controlled nameservers via modifica-
tion of system configuration files is prevented by providing
versions with trusted IP addresses and port mappings. The
LibOS ensures the integrity of the files via the file system
shield. Third, Sys and both types of MITM attackers (Mc2gw,
Mgw2srv) can try to attack unprotected DNS traffic directly.
Direct attacks are prevented by securely tunneling DNS traffic
through the DTLS tunnel to trusted, internal resolvers which
follow integrity-protected DNS protocols for name resolution
(e.g. DNSSEC, DoH, DoT).

A10: Attacking Connections to Internal Servers
(SR2+SR3). Attacking the communication between shielded
apps and internal servers (incl. DMZ) is not possible. The
traffic is protected from Sys and Mc2gw attackers by SENG’s
DTLS tunnels between the shielded apps and the gateway. As
the internal servers are located in trusted networks, there are
no Mgw2srv attackers between them and the trusted gateway.

A11: Attacking Connections to External Servers
(SR2+SR3). SENG cannot protect the traffic between gate-
way and external servers. However, SENG enables network
administrators to grant access to external networks only to
shielded applications that securely establish end-to-end pro-
tected connections (e.g. Table 2, rule 2). If required, the file
system shield can protect app-specific configuration files that
define the security level of the shielded app. Therefore, SENG
can indirectly enforce protection against Mgw2srv attackers.

A12: Direct Information Leakage (SR6). SENG enables
the gateway to identify and block traffic coming from non-
shielded senders, such as malware. Attackers cannot modify
the behavior of shielded apps to leak information (A01–A03).
They cannot get access to attested tunnel connections to au-
thenticate malicious traffic for homecalling either (A04–A05,
A07–08). Leaking non-encrypted traffic of shielded apps to

the external network or to attacker-controlled external servers
via DNS- or header-based redirection attacks are prevented as
well (A09–A11). As a result, adversaries can neither connect
to external servers, nor encode sensitive data in shielded traf-
fic, nor redirect internal, shielded traffic to external networks.

A13: Direct Remote Control (SR6). SENG enforces ac-
cess control also for incoming connections, which blocks
direct connections from external adversaries to internal mal-
ware. Sneaking data into the internal network by attacking
external shielded clients is prevented analogously to attacks
against internal apps (see A12).

A14: Header-based Covert Channels (SR6). Any at-
tempts to establish a covert channel via header manipulations
is prevented by SENG. Information leakage by internal attack-
ers via tunnel header manipulation is prevented, as the SENG
server strips the headers at the gateway. Remote commands
that external attackers may inject by manipulating communi-
cation headers is likewise prevented, as the gateway strips the
link layer headers and the SENG server securely tunnels the
IP packets to the shielded applications. Therefore, adversaries
cannot observe information encoded in the internal headers.

A15: Timing-based Covert Channels (SR6). Attackers
may aim to create side channels based on packet timings
(e.g., encoding information by delaying packets). While we
excluded such covert channels from our threat model, SENG
could adopt techniques to mask timing channels [8, 60].

A16: Steering Shielded Programs for Info Leaks (SR6).
Attackers could try to abuse shielded applications to exfiltrate
data. Consider a shielded browser. Its interactive interface
lets users navigate (e.g., enter URLs). While we trust the user,
a system-level attacker could intercept keyboard input and
inject malicious commands into the shielded app. This way,
adversaries control network traffic even of shielded apps. Non-
interactive interfaces allow for similar attacks. For example,
if users click on links displayed in a shielded mail client, the
mail client calls a non-interactive interface to steer a browser
to open the link. Attackers can intercept or use the interface
to control the browsing targets and query strings. The general
underlying problem is that shielded applications have to verify
if their inputs stem from shielded applications.

To mitigate these attacks, we can rely on trusted I/O for
interactive applications in addition to the shielded interfaces
we specified in our threat model (cf. Section 2). We regard
the adoption of secure I/O in the form of upcoming HW
extensions [34] or dongles [17,29] as realistic for critical busi-
ness environments which already deploy HW authentication
dongles. The LibOS can leverage trusted I/O to use attested,
secure I/O paths between enclave and I/O devices [17, 29].
The LibOS can then verify that user input comes from a
trusted device before forwarding input to the shielded app.
Shielded interfaces based on local attestation, like SGX-based
RPC calls [55], allow shielded apps to securely interact and
thereby protect non-interactive interfaces (e.g., trustworthy
path from mail client to browser). Problems still persist, how-

11

ever, if the caller has different (lower) app-grained privileges
than the callee. To avoid the resulting confused-deputy at-
tacks, the callee would have to forward the identifier of the
caller to the SENG server—a significant research endeavor
we leave open to future work.

A17: Privilege Escalation by Backdoored or Compro-
mised Enclaves (SR6). We now discuss a relaxed threat
model, where attackers can gain control over shielded apps,
e.g., via backdoors or runtime compromises. Once compro-
mised, attackers can send malicious traffic through the app’s
attested tunnel as long as the traffic matches the app’s poli-
cies. If the policies are restrictive and allow communication
to few vetted destinations only (e.g., shielded mail clients
may only contact the local mail server), the resulting harm is
limited. Any attempt of the compromised enclave to spoof its
IP addresses, e.g., to join a more privileged subnetwork, will
fail, because the SENG server detects unauthenticated traffic
(A05) and restricts tunneled traffic to the assigned enclave IP
(cf. Section 6.4). Perspectively, the app-grained traffic sepa-
ration enables app-specific classification models for network
intrusion detection systems, which further ease the detection
of anomalous behavior of shielded apps upon compromise.

A18: SENG Bypass via Gateway Compromise (SR2-
3, SR4-6). Our threat model fully trusts the central gateway,
following the widely popular “bastion host” setting of network
firewalls. If system-level attackers gain full control over the
SENG server, firewall and network card (NIC), they obtain
full access to the network traffic (breaking SR2+SR3) and
can bypass the firewall (breaking SR4-6). While one could
move the SENG server and firewall into user-level TEEs (e.g.,
SGX enclaves) to protect the decrypted enclave traffic and
firewall integrity, this approach can only protect enclave-to-
enclave communication (breaking SR2+SR3). Yet as system-
level attackers control the hardware, they can still bypass the
firewall and tamper with the communication.

To tackle this extended threat model, the gateway could rely
on a system-level TEE, which is isolated from the compro-
mised OS and can additionally claim exclusive ownership of
the network card. We regard TrustZone-assisted TEE systems,
e.g., OP-TEE5, a reasonable choice for the SENG gateway.
TrustZone extends CPUs, memory and devices with the notion
of a normal and secure mode (resp. “world”) and allows HW-
enforced access control based on the current CPU mode [44].
OP-TEE runs the regular OS and apps in the normal world
and a HW-isolated trusted kernel inside secure kernel mode
together with trusted applications (TAs) in secure user mode.
For SENG, the trusted kernel gets exclusive ownership of
the NIC and includes a trusted network stack and firewall.
The NIC access policy blocks direct access by normal-world
system-level attackers (SR6) and enables the trusted kernel
to force all network I/O through its "system calls" (complete
mediation). On each network operation, the trusted kernel

5https://www.op-tee.org/

can guarantee firewall enforcement on all traffic (SR4+SR5).
The SENG server (including the policy database) runs as a
trusted application to be isolated from the attackers and inter-
acts directly with the trusted kernel for secure network I/O
(SR2+SR3). To allow trusted policy administration, a secure
bootstrapping phase can register trusted credentials (e.g., pub-
lic keys) and a policy TA can commit authenticated policy
update requests. Secure boot and SW- or TPM-based remote
attestation can be used to further enhance trust into the gate-
way. We leave a full system implementation of the protected
gateway open to future work and thus stay in line with the
common bastion host assumption of firewalls.

8 Prototype Implementation

We have implemented a prototype for the SENG Runtime
and SENG Server, as well as an alternative, library OS-
independent runtime SDK based on Intel’s SGX SDK [25].

SENG Client Runtime (with LibOS). Our client-side
component is written in C/C++ and consists of Graphene-
SGX6 [9] and our SENG runtime library. As enclave exits
cause huge performance overhead [42], we use experimen-
tal support for exitless syscalls in Graphene-SGX [33]. The
runtime is implemented in about 2400 lines of code7 and
uses lwIP 2.1.2 [38], OpenSSL 1.0.2g and an adapted ver-
sion of the sgx-ra-tls attester code8 [32]. We only included
the IPv4 modules of lwIP to minimize the code base, and
patched the definitions in the header file to be compatible
with POSIX/Linux. We chose OpenSSL as it is well-known
and fast. If a smaller code base is preferred over perfor-
mance, we can easily replace it with lightweight alternatives
like mbedTLS. For the tunnel, we use DTLS 1.2 with the
ECDHE_RSA_WITH_AES_256_GCM_SHA384 cipher suite.

The SENG runtime is integrated as a middle layer between
Graphene-SGX and the shielded app via the preloading func-
tionality of the internal linker. The runtime exposes a socket
API to the app which shadows the one of Graphene and for-
wards calls to lwIP. We configured Graphene-SGX and lwIP
to use two distinct file descriptor ranges, s.t. we can distin-
guish between calls of the app and those of the tunnel module.

In our current version, the tunnel module directly com-
municates with the IAS and embeds the attestation report
inside the X.509 client certificate. However, note that the at-
testation variants described in Subsection 6.1 could be easily
integrated. While the tunnel module thread handles DTLS
packet receipt, the lwIP thread handles the decrypted IP pack-
ets. For increased parallelization and syscall reduction, we
currently use one DTLS socket per direction and replaced
lwIP-internal locks with spinlocks.

6commit: 58cb88d2c187358aad428b100d1ff444173e1a2b
7according to https://github.com/AlDanial/cloc
8commit: 10de7cc9ff8ffaebc103617d62e47e699f2fb5ff

12

https://github.com/AlDanial/cloc

SENG Client Runtime Without LibOS (SENG-SDK).
Our standard client runtime uses a LibOS, which adds to
the client app’s complexity and overhead to ease SENG inte-
gration. In certain settings, it may be desired to deploy SENG
for client apps that cannot sacrifice performance or memory
overhead. We thus designed an alternative client-side run-
time SDK that adds support for apps based on Intel’s SGX
SDK [25]. This so-called SENG-SDK does not include a
library OS, which makes it more lightweight and enables flex-
ible integration into other frameworks [55]. Furthermore, by
dropping the LibOS, the SDK trades legacy support (AR1)
in for higher performance (cf. Section 9.5) and support for
native SGX apps with trusted-untrusted split design.

The SENG-SDK is fully compatible with the SENG server
and all SGX SDK-based toolchains. While SENG-SDK can-
not remove the effort of porting apps to SGX, the toolchain in-
tegration makes porting enclaves to the SDK straightforward.
Furthermore, the SDK provides a single init function which
handles the whole setup (network stack, tunnels, threads) and
afterwards exposes a secure POSIX-style socket and DNS
API for trusted enclave code. SENG-SDK is written in about
2300 lines of C/C++ code and uses lwIP, adapted sgx-ra-tls
attester code, SGX SSL9 v2.2 and the SGX SDK v2.7.1. We
added timeout support to condition variables of SGX SDK for
lwIP, included the SSL stack into SGX SSL and added O/E-
CALLs for the DTLS tunnel management. We use switchless
OCALLs to accelerate the tunnel socket I/O.

SENG Server. Our server prototype is an event-based,
single-threaded DTLS server written in C/C++ based on libuv
1.9.1 [36], OpenSSL 1.0.2g and the challenger code of sgx-
ra-tls. The core functionality consists of ∼1300 lines of code,
and support for SENG server sockets adds ∼1500 lines. The
server uses a TUN device as IP-level virtual network interface
to the gateway. The SENG server configures the TUN device
as the default gateway for connected SENG runtime clients
and links each DTLS tunnel to the client’s enclave IP address.

9 Evaluation

We now evaluate our prototype implementation regarding
efficacy and overhead. We use iPerf3 [26] to measure the
network throughput, and then show how the results transfer to
real-world client (cURL, Telnet) and server (NGINX) applica-
tions. We then provide microbenchmarks to measure the setup
phase of the SENG runtime. Afterwards, we revisit SENG’s
NGINX performance and significantly improve it by porting
NGINX to the SENG-SDK. We conclude with a discussion
on the SENG server scalability under an increasing number
of enclaves and according tunnels.

In our experiments, the SENG server runs on a workstation
with an Intel® Core™i5-4690 CPU with 4 cores, 32 GB of

9Intel’s SGX port of OpenSSL

0 200 400 600 800 1000

Bandwidth [Mbps]

0

200

400

600

800

1000

T
hr

ou
gh

pu
t

[M
bp

s]

390.36

925.93
867.66

native|pure
SENG
without exitless syscalls

Figure 5: iPerf3 Throughput of a Single TCP Connection

memory and Debian 9 with a 4.9 Linux kernel. The SGX-
enabled client system has an Intel® Core™i7-6700 CPU with
8 cores, 64 GB of memory and runs the SGX enclaves inside
a Ubuntu 16.04.4 LTS docker container with a 4.15 Linux
kernel. The underlying host runs Ubuntu 18.04.2 LTS. Both
systems are connected to the local network via 1 Gbps NICs
(Intel I217-LM/I219-LM). We route the client’s traffic via the
SENG server to ensure that traffic from and to our SGX client
system passes our virtual network gateway.

We take the native execution of the applications (“native”)
as baseline for our evaluation and compare it with the perfor-
mance of Graphene-SGX (“pure”) and of SENG (“SENG”).
This way, we can attribute the overhead to either Graphene-
SGX or the additional latency and overhead introduced by the
SENG runtime and SENG server components.

9.1 Network Performance
We first report on the maximum downlink throughput of a sin-
gle TCP connection using iPerf3. iPerf3 sends TCP packets
to another iPerf3 instance and measures the resulting through-
put. We generate the traffic on the gateway and receive traffic
inside the enclave on the client system. We keep the default
configuration of iPerf3 which calculates the average over 10 s
and we step-wise increase the bandwidth of the work load.

Figure 5 shows the average receive throughput over five iter-
ations. The throughputs of all three approaches scale linearly
with increased iPerf3 bandwidths, and SENG shows no over-
head for bandwidths up to ∼800 Mbps. The native and pure
Graphene-SGX setups both reach a maximum throughput of
925.93 Mbps, whereas SENG’s peak average throughput is
867.66 Mbps (∼6% lower). Our 10 s measurements include
TCP’s slow start, and we observed higher temporal through-
puts of∼933 Mbps for native and pure, as well as∼899 Mbps
for SENG, reducing the peak loss to 3–4%. The slightly lower
peak throughput of SENG is caused by the additional latency
added by the SENG-internal TCP/IP stack and the DTLS tun-
nel. We included the results of SENG with enclave exits on
every syscall (∼390 Mbps) to highlight that exitless designs

13

1MB 10MB 20MB 40MB 100MB 1GB
File Size

−40
−30
−20
−10
0

10

20

30

40

D
ow

nl
oa

d
ti

m
e

ov
er

he
ad

[%
]

SENG:
+0.40%
(0.05ms)

+12.2%
(11ms)

+ 8.8%
(15ms)

+12.2%
(42ms)

+14.1%
(121ms)

+11.6%
(994ms)

native pure SENG

Figure 6: Time differences from cURL Benchmark

are a key-enabler for I/O-intense enclaves [2, 42].
We conclude that the reduced throughput peak (3–7%) is

acceptable, especially as clients and/or remote parties are typi-
cally bound to lower bandwidths, which showed no overhead.

9.2 Client Applications

cURL. cURL is a popular tool/library to transfer data via
several common protocols. In our setting, an external partner
could use cURL to exchange files with internal servers. We
have chosen cURL to check if SENG readily supports and
scales to real-world client apps. To this end, we set up an
Apache web server and measured how long cURL takes to
download files via HTTP. Apache runs on the local gateway
to capture the overhead with minimal impact from network
jitter, analogous to iPerf3. We used the built-in measurements
of cURL and took the 30 % trimmed mean over 50 iterations
for each file size as a robust estimator [2].

Figure 6 shows the observed download time overhead rela-
tive to native execution. Graphene-SGX is again on par with
the baseline as it shares the untrusted kernel network stack.
For a file size of 1 MB, SENG shows minimal overhead due
to the short download time. As the file size increases, SENG
faces overhead of 8.8–14.1% which is higher than the one
reported for iPerf3, but still reasonable. We observed TCP
segmentation for every cURL payload, which was not present
during iPerf3 and adds reassembly load and delay on lwIP as
it cannot use HW offloading and has a lightweight design.

We conclude that SENG also shows reasonable perfor-
mance for real-world client apps. Note that exitless syscalls
in Graphene-SGX are still experimental and future versions
might stabilize and further reduce the network overhead.

Telnet. Telnet (RFC 854) is widely used for remote termi-
nal access and serves as our representative for remote login
tools. SENG’s built-in DTLS tunnel protects plaintext Telnet
against local system-level and on-path attackers within the
organization network. Furthermore, SENG can restrict remote

1 5 9 13 17 21

Work Load [1k req/sec]

0

200

400

600

800

1000

La
te

nc
y

[m
s]

native
pure
SENG
SENG-sdk

31 34 37 40 43 46 49

Figure 7: Average Request Latencies of NGINX

access to trusted, TLS-based login clients and shield them
from local user- or system-level attackers (e.g., hooks).

We used a Telnet server on a local workstation and mea-
sured over 10 iterations the average time it takes for a Telnet
client to log in, execute a set of Bash commands for entering
a directory, list the contained files, and finally, display the con-
tent of a 1 kB document. Telnet takes 269.38 ms during native
execution and faces 0.17 % overhead for Graphene-SGX and
0.09 % for SENG, which is practically negligible.

9.3 Server Application (NGINX)
We next evaluate a server setting where we aim to shield an in-
ternal server from internal MITM and system-level attackers.
We chose NGINX as a demonstrator which is a wide-spread
event-based HTTP server. NGINX runs on the client host
inside SGX and uses a single, poll-based worker thread to
serve the 612 Byte demo page via HTTP. We used the wrk2
benchmark tool from an internal workstation to issue HTTP
requests under step-wise increasing request frequency. For
each workload, wrk2 spawned two threads with 100 connec-
tions and calculated the mean reply latency over ten seconds.

Figure 7 shows the average latencies over five iterations.
Graphene-SGX and SENG can handle ∼15 k requests per
second with a per-reply latency of 1.5–2.5 ms before perfor-
mance degrades. Native execution clearly outperforms “pure”
and SENG with∼40 k. This is no surprise and follows the ob-
servations of Tsai et. al [9], because Graphene-SGX currently
only supports synchronous syscalls, which cannot effectively
overlap computation and I/O. We inspected the CPU utiliza-
tion of NGINX under different loads and revealed that in the
“pure” and “SENG” setting, the NGINX thread saturates the
CPU via continuous polling and Graphene’s I/O overhead.

In conclusion, SENG cannot yet compete with native
NGINX, but is on par with Graphene-SGX while provid-
ing more security guarantees and features on top of it. Fur-
thermore, the bottleneck can be attributed to Graphene-SGX
rather than to SENG and we therefore expect better perfor-
mance under future asynchronous or batched I/O support. In

14

Microbench Time [ms] StdDev [ms]
Spawn lwIP thread 38.13 ± 0.53
OpenSSL init 710.98 ±10.16
RSA key gen (2048) 84.55 ±66.25
get SGX quote 35.67 ± 2.20
get IAS report 639.05 ±16.46
gen X.509 Cli-Cert 1.59 ± 0.13
DTLS Tunnel setup 19.86 ± 1.22
Spawn Tunnel thread 42.64 ± 1.20
Total SENG Runtime 1578.03 ±68.12
Without SSL Init 867.05 -
Without SSL Init + IAS 228.00 -
(a) LibOS init (default) 868.00 ±12.64
(b) LibOS init (reduced) 728.27 ± 8.06
(c) LibOS init (minimal) 274.27 ± 1.67

Table 4: Client Setup Times of SENG and Graphene-SGX

Section 9.5, we will revisit this claim and show that we can
significantly improve the performance of NGINX by porting
it to the SENG-SDK (cf. “SENG-sdk” in Figure 7).

9.4 Setup Microbenchmark

We now measure the initialization overhead that the SENG
runtime adds to Graphene-SGX, excluding the prototype-
specific socket API handlers. As the setup time of Graphene-
SGX depends on the enclave configuration, we measured the
time for three configurations: (a) default values of LibOS-
internal tests, (b) with reduced stack, heap and thread number,
and (c) with minimal accepted size.10 For SENG, we mea-
sured the different setup phases of the runtime.

Table 4 breaks down the average setup times over ten it-
erations. The total startup overhead of the SENG runtime
is 1578.03 ms, i.e. it adds about 182 % overhead on top of
the Graphene-SGX initialization under default configuration.
However, the vast majority of this overhead stems from two
steps: (i) the init routine of the OpenSSL library (710.98 ms)
and (ii) the IAS communication (639.05 ms). The high
OpenSSL startup time is partially attributable to the default
seeding of the random number generator. It could be reduced
by switching to the RDRAND engine to approach a setup time of
867.05 ms, which is comparable to the default LibOS time (a).
As discussed in Sec. 6.1, the remote attestation could be han-
dled by an internal AS server with caching support instead.
Thus, the total startup time could be further reduced to ideally
228 ms, i.e. about 26 % of the default LibOS time (a).

We conclude that SENG adds a reasonable startup overhead
which could be optimized to become comparable to that under
reduced (b) or minimal (c) SENG runtime configurations.

10default: 256MB size, 32MB heap, 4MB stack, 4 threads; reduced: 4MB
heap, 256KB stack, 2 threads; min.: 128MB size + reduced; all: 2 rpc threads

9.5 Accelerating NGINX using SENG-SDK
We next revisit the NGINX results of Section 9.3 and show
that SENG performs significantly better when replacing
Graphene-SGX with a faster primitive. SENG performed on
par with “pure” Graphene-SGX for NGINX with ∼15 k re-
quests per second, but got clearly outperformed by the native
baseline of∼40 k (cf. Figure 7). To show that SENG can over-
come the bottleneck caused by Graphene-SGX, we dropped
the LibOS and instead ported NGINX11 to our SENG-SDK.
We ported only NGINX’s platform-specific code to preserve
comparability with previous results and added about 1100
lines of code for enclave setup and missing syscalls.

Figure 7 shows that SENG-SDK (“SENG-sdk”) reaches
∼36 k request per second with a per-reply latency of 1.5–
2.0 ms. SENG-SDK significantly outperforms the Graphene-
based SENG runtime by factor 2.4 and reaches up to 90 %
of native performance. Compared to Graphene-SGX, SENG-
SDK provides more efficient OCALL interfaces tailored for
the DTLS tunnel I/O and benefits from the more lightweight
abstractions of Intel’s SGX SDK. However, note that SENG-
SDK looses legacy support and drop-in deployment (AR1).

We conclude that SENG can significantly benefit from per-
formance improvements of the underlying primitives, letting
it handle complex apps like NGINX with small overhead.
Our rudimentary port to SDK-SENG achieved 90 % of na-
tive performance and could be further improved by adding
NGINX-specific optimizations and an efficient file system
shield. We are confident that the SENG runtime will likewise
benefit from upcoming improvements of Graphene-SGX.

9.6 Server Scalability and Memory Overhead
We now discuss how the SENG server scales w.r.t. the num-
ber of clients and connections. The server has a small static
memory footprint of which the TUN interface accounts for
at most 750 kB under a full transmit queue12. The dynamic
memory overhead is largely determined by the send and re-
ceive buffers of the per-enclave DTLS tunnels. In common
settings, these would consume 8 KiB to 256 KiB per enclave
and direction, plus about 32 KiB for the SSL frame buffer, but
can be tuned to lower values. When considering the upper
range, this still means that we could handle about 2000 clients
per 1 GiB memory, with a huge potential for swapping large
parts of the typically unused buffers. For SOCKS servers, the
memory overhead increases with the number of connections
they have to perform on behalf of the clients. In contrast, the
SENG server is oblivious to the tunneled client connections
and therefore faces constant per-client overhead.

The limiting performance bottleneck of the SENG server
is the computational overhead of de- and encryption of DTLS
packets and the general network I/O. In our experiments, the

11in single-process mode
12default length stores maximum 500 packets

15

server easily coped with any client bandwidth, and given its
1 Gbps network card we cannot test higher loads. The CPU uti-
lization (around 65% on a single core, including waiting time)
at maximum bandwidths suggests that the non-optimized
server implementation will scale to 6+ Gbps on our hardware.
This performance could be further optimized by improving
the server code (e.g., using vectored sending, replacing the
tunnel device with DPDK kernel NICs, etc.).

10 Discussion

We conclude with a discussion on upcoming improvements
and directions to overcome limitations of our prototype.

Overcoming Memory Limitations of Enclaves. TEEs
like SGX face two common challenges in practice: (i) per-
formance impacts of context switches and (ii) limited secure
memory. In Section 9.1 and Section 9.5, we have already
presented that careful switchless designs and improvements
in existing LibOS primitives (incl. upcoming ones like Oc-
clum [53]) can significantly increase SENG’s performance for
complex apps like NGINX. In the following, we focus on the
memory bottleneck (ii). SGX currently limits EPC memory
to 128 MB (of which around 90 MB are useable by apps) and
does not support memory sharing across enclaves. Thus, run-
ning many enclaves in parallel stresses memory and triggers
expensive paging. We see multiple ways to overcome this in
SENG: (a) Intel CPUs now support dynamic memory manage-
ment for SGX [39]13 which decreases memory pressure via
lazy loading and page unloading. In fact, recent studies on li-
brary debloating [46,47] have shown that apps only use small
fractions of the loaded code (incl. libraries) and tools like RA-
ZOR [46] trim over 70% of bloated binaries. With widespread
dynamic paging support, SENG can integrate compiler- and
loader-based schemes into the LibOS to reduce the enclave
footprint. (b) SENG could follow the idea of Panoply by split-
ting the SENG runtime library and other shared libraries into
separate SGX enclaves that are shared by all shielded apps and
used for attested RPC calls. [55] (c) Upcoming LibOSes like
Occlum [53] apply HW-isolation mechanisms together with
SW-based fault isolation to efficiently and securely run mul-
tiple processes in a single enclave. By integration of SENG
inside Occlum rather than Graphene-SGX, multiple shielded
apps with same privileges could directly share common li-
braries inside SGX. While the memory bottleneck of SGX
right now indeed poses a major challenge to LibOSes and
SENG, we conclude there are several mid-term and long-term
directions for improving the number of concurrent apps.

Frequent Measurement Updates. Any change to an app
will cause a change to the enclave report and identity, too.
While alternative designs limit the number of updates by in-
cluding only a loader inside the measurement [5], we highlight

13https://github.com/ayeks/SGX-hardware#
hardware-with-sgx2-support

that our choice roots the app identity directly in the HW. We
thus can directly specify app-grained policies on the exact
app identity and do not need additional, potentially vulnera-
ble, SW-based authentication schemes. As discussed in Sec-
tion 5.4, we also regard integration of measurement updates
into today’s continuous build chains as practical and have
shown in Section 5.3 that SENG is flexible enough to group
multiple app versions into shared enclave IP subnetworks. A
future direction might include exploration of shared “library
enclaves” (“micron” in Panoply [55]) to compartmentalize
enclaves while keeping HW-based identification.

Other TEEs and Improvements. While our current design
uses SGX, it relies on common properties of other TEEs,
namely trusted execution and remote attestation. Therefore,
we can likely transfer SENG to other TEEs [6, 30]. We chose
SGX, as it is widely available on commodity systems, and
poses challenges due to its restriction to user space code.

Prototype Limitations. Our current prototype does not
support all system calls yet. We miss fork and exec in par-
ticular, which could be extended like in other LibOSes [9,55].
Furthermore, we have not yet integrated a database.

11 Conclusion

Network administrators have lost control over which client
apps communicate in their sensitive networks. Not being able
to centrally, precisely and reliably govern network accesses
regularly results in data exfiltration by malware or exploitation
attempts against vulnerable client software. Unfortunately, ex-
isting attempts to prevent such incidents (anti-virus, malware
sandboxes, IDS, etc.) are susceptible to evasion. SENG’s abil-
ity to specify app-grained policies enables for fine-grained and
application-aware traffic control concepts. Moreover, SENG
provides strong security guarantees that are rooted in hard-
ware and even withstand system-level attackers. SENG thus
fills a need that has existed since the introduction of firewalls:
per-app attribution of network traffic.

12 Artifacts

The prototype of SENG is available as an open source project
at https://github.com/sengsgx/sengsgx.

Acknowledgments

We thank our anonymous paper and artifact reviewers and
our shepherd Adrian Perrig for their valuable feedback. Also,
we thank Cas Cremers for his feedback on the initial SENG
design, and Giorgi Maisuradze for his paper draft review.

16

https://github.com/ayeks/SGX-hardware#hardware-with-sgx2-support
https://github.com/ayeks/SGX-hardware#hardware-with-sgx2-support
https://github.com/sengsgx/sengsgx

References

[1] A. Ahmad, K. Kim, M. I. Sarfaraz, and B. Lee. OBLIVI-
ATE: A data oblivious filesystem for intel SGX. In
Network and Distributed System Security Symposium
(NDSS), 2018.

[2] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin,
C. Priebe, J. Lind, D. Muthukumaran, D. O’Keeffe, M. L.
Stillwell, D. Goltzsche, D. Eyers, R. Kapitza, P. Pietzuch,
and C. Fetzer. SCONE: Secure linux containers with in-
tel SGX. In USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2016.

[3] D. E. Asoni, T. Sasaki, and A. Perrig. Alcatraz: Data
Exfiltration-Resilient Corporate Network Architecture.
In International Conference on Collaboration and Inter-
net Computing (CIC), 2018.

[4] T. Barabosch and E. Gerhards-Padilla. Host-based code
injection attacks: A popular technique used by malware.
Proceedings of IEEE International Conference on Mali-
cious and Unwanted Software (MALCON), 2014.

[5] A. Baumann, M. Peinado, and G. Hunt. Shielding Ap-
plications from an Untrusted Cloud with Haven. In
USENIX Symposium on Operating Systems Design and
Implementation (OSDI’14).

[6] F. Brasser, D. Gens, P. Jauernig, A.-R. Sadeghi, and
E. Stapf. SANCTUARY: ARMing TrustZone with User-
space Enclaves. In Network and Distributed System
Security Symposium (NDSS), 2019.

[7] S. Brenner, C. Wulf, D. Goltzsche, N. Weichbrodt,
M. Lorenz, C. Fetzer, P. Pietzuch, and R. Kapitza. Se-
cureKeeper: Confidential ZooKeeper Using Intel SGX.
In Middleware Conference (Middleware), 2016.

[8] S. Cabuk, C. E. Brodley, and C. Shields. IP Covert Tim-
ing Channels: Design and Detection. In Conference on
Computer and Communications Security (CCS), 2004.

[9] C. che Tsai, D. E. Porter, and M. Vij. Graphene-SGX:
A Practical Library OS for Unmodified Applications
on SGX. In USENIX Annual Technical Conference
(USENIX ATC), 2017.

[10] S. Checkoway and H. Shacham. Iago Attacks: Why the
System Call API is a Bad Untrusted RPC Interface. In
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2013.

[11] Cisco. NVM. https://www.cisco.com/c/dam/global/en_au/
assets/pdf/anyconnect-network-visibility.pdf.

[12] The CLIP OS Project, 2020. https://clip-os.org/en/.

[13] V. Costan and S. Devadas. Intel SGX Explained. IACR
Cryptology ePrint Archive, 2016:86, 2016.

[14] Docker networking. https://docs.docker.com/network/.

[15] J. A. Donenfeld. WireGuard: Next Generation Kernel
Network Tunnel. In Network and Distributed System
Security Symposium (NDSS), 2017.

[16] H. Duan, C. Wang, X. Yuan, Y. Zhou, Q. Wang, and
K. Ren. LightBox: Full-Stack Protected Stateful Mid-
dlebox at Lightning Speed. In Conference on Computer
and Communications Security (CCS), 2019.

[17] S. Eskandarian, J. Cogan, S. Birnbaum, P. C. W. Bran-
don, D. Franke, F. Fraser, G. G. Jr., E. Gong, H. T.
Nguyen, T. K. Sethi, V. Subbiah, M. Backes, G. Pel-
legrino, and D. Boneh. Fidelius: Protecting User Secrets
from Compromised Browsers. In IEEE Symposium on
Security and Privacy (SP), 2019.

[18] FireEye. M-Trends 2019. https://content.fireeye.com/m-
trends/rpt-m-trends-2019.

[19] FireMon’s State of the Firewall, 2019.
www.firemon.com/2019-state-of-the-firewall-report/.

[20] S. Gallenmüller, D. Schöffmann, D. Scholz, F. Geyer,
and G. Carle. DTLS Performance - How Expensive is
Security? 2019. https://arxiv.org/pdf/1904.11423.pdf.

[21] C. Gkantsidis, T. Karagiannis, D. Naylor, R. Li, and
P. Steenkiste. And Then ThereWere More: Secure Com-
munication for More Than Two Parties. Technical Re-
port MSR-TR-2017-24, July 2017.

[22] D. Goltzsche, S. Rüsch, M. Nieke, S. Vaucher, N. We-
ichbrodt, V. Schiavoni, P. Aublin, P. Cosa, C. Fetzer,
P. Felber, P. Pietzuch, and R. Kapitza. EndBox: Scalable
Middlebox Functions Using Client-Side Trusted Execu-
tion. In IEEE/IFIP Conference on Dependable Systems
and Networks (DSN), 2018.

[23] D. Goltzsche, C. Wulf, D. Muthukumaran, K. Rieck,
P. R. Pietzuch, and R. Kapitza. TrustJS: Trusted Client-
side Execution of JavaScript. In Workshop on Systems
Security (EuroSec’17).

[24] A. Houmansadr, C. Brubaker, and V. Shmatikov. The
Parrot Is Dead: Observing Unobservable Network Com-
munications. In IEEE Symposium on Security and Pri-
vacy (SP), 2013.

[25] Intel. SGX SDK. https://software.intel.com/sgx/sdk.

[26] iPerf3. https://iperf.fr/.

[27] iptables Application level firewalling, 2005. debian-
administration.org/article/120/Application_level_firewalling.

17

[28] T. Jaeger, D. H. King, K. R. Butler, S. Hallyn, J. Latten, and
X. Zhang. Leveraging IPsec for Mandatory Per-Packet Access
Control. In 2006 Securecomm and Workshops.

[29] Y. Jang. Building trust in the user I/O in computer systems.
PhD thesis, 2017.

[30] Keystone Enclave, 2019. https://keystone-enclave.org/.

[31] S. Kim, J. Han, J. Ha, T. Kim, and D. Han. Enhancing Security
and Privacy of Tor’s Ecosystem by Using Trusted Execution
Environments. In USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2017.

[32] T. Knauth, M. Steiner, S. Chakrabarti, L. Lei, C. Xing, and
M. Vij. Integrating Remote Attestation with Transport Layer
Security. CoRR, abs/1801.05863, 2018.

[33] D. Kuvaiskii. Add exitless system calls (pr 405).
https://github.com/oscarlab/graphene/pull/405.

[34] R. Lal and P. Pappachan. An architecture methodology for
secure video conferencing. Conference on Technologies for
Homeland Security (HST), 2013.

[35] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado.
Inferring Fine-grained Control Flow Inside SGX Enclaves
with Branch Shadowing. In USENIX Security Symposium,
2017.

[36] libuv. https://libuv.org/.

[37] J. Lind, C. Priebe, D. Muthukumaran, D. O’Keeffe, P.-
L. Aublin, F. Kelbert, T. Reiher, D. Goltzsche, D. Eyers,
R. Kapitza, C. Fetzer, and P. Pietzuch. Glamdring: Automatic
Application Partitioning for Intel SGX. In USENIX Annual
Technical Conference (USENIX ATC), 2017.

[38] lwIP. https://savannah.nongnu.org/projects/lwip/.

[39] F. McKeen, I. Alexandrovich, I. Anati, D. Caspi, S. Johnson,
R. Leslie-Hurd, and C. Rozas. Intel SGX Support for Dynamic
Memory Management Inside an Enclave. In Hardware and
Architectural Support for Security and Privacy (HASP), 2016.

[40] netfilter, 2019. https://www.netfilter.org/.

[41] O. Oleksenko, B. Trach, R. Krahn, M. Silberstein, and C. Fet-
zer. Varys: Protecting SGX Enclaves from Practical Side-
Channel Attacks. In USENIX Annual Technical Conference
(USENIX ATC), 2018.

[42] M. Orenbach, P. Lifshits, M. Minkin, and M. Silberstein. Eleos:
ExitLess OS Services for SGX Enclaves. In European Confer-
ence on Computer Systems (EuroSys). ACM, 2017.

[43] B. Parno, Z. Zhou, and A. Perrig. Using Trustworthy Host-
based Information in the Network. In Workshop on Scalable
Trusted Computing (STC). ACM, 2012.

[44] S. Pinto and N. Santos. Demystifying Arm TrustZone: A
Comprehensive Survey. ACM Comput. Surv., 51(6), Jan. 2019.

[45] R. Poddar, C. Lan, R. A. Popa, and S. Ratnasamy. SafeBricks:
Shielding Network Functions in the Cloud. In Symposium on
Networked Systems Design and Implementation (NSDI), 2018.

[46] C. Qian, H. Hu, M. Alharthi, P. H. Chung, T. Kim, and W. Lee.
RAZOR: A Framework for Post-deployment Software De-
bloating. In USENIX Security Symposium, 2019.

[47] A. Quach, A. Prakash, and L. Yan. Debloating Software
through Piece-Wise Compilation and Loading. In USENIX
Security Symposium, 2018.

[48] The Qubes OS Project, 2020. https://www.qubes-os.org/.

[49] S. Sasy, S. Gorbunov, and C. W. Fletcher. ZeroTrace : Obliv-
ious Memory Primitives from Intel SGX. In Network and
Distributed System Security Symposium (NDSS), 2018.

[50] V. Scarlata, S. Johnson, J. Beaney, and P. Zmijewski. Support-
ing Third Party Attestation for Intel® SGX with Intel® Data
Center Attestation Primitives, 2018.

[51] SELinux, 2019. http://selinuxproject.org/page/NB_LSM.

[52] shadowsocks. https://shadowsocks.org/en/index.html.

[53] Y. Shen, H. Tian, Y. Chen, K. Chen, R. Wang, Y. Xu, and
Y. Xia. Occlum: Secure and Efficient Multitasking Inside a
Single Enclave of Intel SGX. In Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS). ACM, 2020.

[54] M.-W. Shih, S. Lee, T. Kim, and M. Peinado. T-SGX: Eradi-
cating Controlled-Channel Attacks Against Enclave Programs.
In Network and Distributed System Security Symposium, 2017.

[55] S. Shinde, D. L. Tien, S. Tople, and P. Saxena. Panoply: Low-
TCB Linux Applications With SGX Enclaves. In Network and
Distributed System Security Symposium (NDSS), 2017.

[56] Smack (LSM), 2019. http://schaufler-ca.com/.

[57] B. Trach, A. Krohmer, F. Gregor, S. Arnautov, P. Bhatotia, and
C. Fetzer. ShieldBox: Secure Middleboxes Using Shielded
Execution. In Symposium on SDN Research (SOSR’18). ACM.

[58] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bind-
schaedler, H. Tang, and C. A. Gunter. Leaky Cauldron on the
Dark Land: Understanding Memory Side-Channel Hazards
in SGX. In Conference on Computer and Communications
Security (CCS), 2017.

[59] Y. Xiao, M. Li, S. Chen, and Y. Zhang. STACCO: Differen-
tially Analyzing Side-Channel Traces for Detecting SSL/TLS
Vulnerabilities in Secure Enclaves. In Conference on Com-
puter and Communications Security (CCS), 2017.

[60] J. Xing, A. Morrison, and A. Chen. NetWarden: Mitigating
Network Covert Channels without Performance Loss. In Work-
shop on Hot Topics in Cloud Computing (HotCloud), 2019.

[61] D. Zhuo, K. Zhang, Y. Zhu, H. H. Liu, M. Rockett, A. Krish-
namurthy, and T. Anderson. Slim: OS kernel support for a
low-overhead container overlay network. In USENIX Sym-
posium on Networked Systems Design and Implementation
(NSDI), 2019.

18

	Introduction
	Threat Model
	Related Work
	Background
	Design
	Requirements
	Overview
	Application-Grained Firewall Policies
	Deployment of SENG

	Implementation
	Initialization and Tunnel Setup
	Network Traffic Shielding
	DNS Resolution Shielding
	Application-Grained Policy Enforcement
	Shielded Servers

	Security Analysis
	Prototype Implementation
	Evaluation
	Network Performance
	Client Applications
	Server Application (NGINX)
	Setup Microbenchmark
	Accelerating NGINX using SENG-SDK
	Server Scalability and Memory Overhead

	Discussion
	Conclusion
	Artifacts

