TrustedGateway: TEE-Assisted Routing and Firewall Enforcement
Using ARM TrustZone

Fabian Schwarz
CISPA Helmholtz Center for Information Security
Saarbriicken, Germany
schwarz.fabianfrank@gmail.com

ABSTRACT

Gateway routers are at the heart of every network infrastructure,
interconnecting subnetworks and enforcing access control policies
using firewalls. However, their central position makes them high-
value targets for network compromises. Typically, gateways are
erroneously assumed to be hardened against software vulnerabili-
ties (“bastion host”). In fact, though, they inherit the attack surface of
their underlying commodity OSes which together with the wealth
of auxiliary services available on both consumer and enterprise
gateways—web and VoIP, file sharing, remote logins, monitoring,
etc.—undermines this belief. This is underlined by a plethora of
recent CVEs for commodity OSes and services of popular routers
which resulted in authentication bypass or remote code execution
thus enabling attackers full control over their security policies.

We present TrustedGateway (TruGW), a new gateway archi-
tecture, which isolates “core” networking features—routing and
firewall—from error-prone auxiliary services and gateway OSes.
TruGW leverages a TEE-assisted design to protect the network path
and policies while staying compatible with commodity gateway
platforms. TruGW uses ARM TrustZone to protect the NIC and
traffic processing from a fully-compromised gateway and permits
policy updates only by trusted remote administrators. That way,
TruGW can readily guarantee the secure enforcement of trusted
policies on commodity gateways. TruGW’s small attack surface is
a key enabler to regain trust in core network infrastructures.

CCS CONCEPTS

« Security and privacy — Firewalls; Trusted computing; -
Networks — Routers.

KEYWORDS
TrustZone, Firewall, Isolation, TEE, NIC, Virtio, Router, Gateway

1 INTRODUCTION

Gateway routers interconnect networks and govern their commu-
nication using firewall policies. Therefore, gateways are attractive
targets for adversaries seeking to abuse their central position for
network infiltration and information leakage. While gateways were
assumed to be hardened (“bastion host”), a series of recent CVEs
has raised serious concerns over their security (Table 6, Appendix).
These vulnerabilities typically arise out of non-hardened auxiliary
services that execute on gateways. These services easily add up to a
large, complex code base which is hard to audit (Table 4, Appendix).
Therefore, many serious vulnerabilities lurk in these auxiliary ser-
vices, which enable attackers to remotely compromise the gateways.
Once compromised, they threaten also core services (routing and
firewalling), because gateways nowadays build on commodity OSes

for which several vulnerabilities and privilege escalation attacks
have been revealed (Table 2 + 3, Appendix). Consequently, remote
attackers can chain service to system exploits to gain full control
over gateways and their policies—putting the entire network in-
frastructure at serious risk. As we will discuss in Section 2, the
root cause indeed seems to be the increased threat surface due to
auxiliary services and commodity systems, because, in fact, the core
gateway tasks represent just a small fraction of the entire software
stack and attack surface on gateways. Yet vendors keep adding a
plethora of auxiliary gateway services (e.g., VoIP, file sharing, web
proxies, printing, IoT hubs, content caching) to increase system
utility and gain marketing advantages—at the cost of security.

Researchers and large companies have realised the need for
more secure network gateways and try to re-establish trust by
isolating their critical core functionalities. However, existing ap-
proaches fail to protect commodity gateways—leaving millions of
home and smaller enterprise networks vulnerable (cf. Section 3).
Commodity gateways relying on VMs or OS containers for service
isolation [10, 27] suffer from their huge attack surface (Table 3, Ap-
pendix), while datacenter SmartNICs, which perform routing and
filtering isolated from the host system, are too expensive, bulky,
and complex for commodity devices. Research proposals using
secure containers based on Intel SGX for routing and firewall pro-
tection [2, 17, 50] rely on future hardware support and cannot guar-
antee policy enforcement on stand-alone gateways due to SGX’s
missing hardware control over NICs, which enables a full policy
bypass.

To foster widespread protection of network infrastructures of
consumers and smaller enterprises, we require a design that (i) guar-
antees secure enforcement of a gateway’s routing and firewall poli-
cies even under a system-level attacker while having (ii) a small
trusted computing base (TCB) and (iii) compatibility with commod-
ity hardware and software. However, the complexity of network
subsystems, including NIC I/O and multiple layers of system soft-
ware, makes it particularly challenging to come up with a design
that balances security, performance, and compatibility. For example,
a fully isolated network stack provides high protection, but at the
cost of a bloated TCB and potential incompatibilities with separated
commodity services, while a low TCB solution might face security
limitations or high performance penalties on calls into the protected
submodules. In addition, compatibility with consumer gateways
is often in conflict with new efficient security technologies (e.g.,
SmartNICs) and might require TCB-increasing extra frameworks.

In this paper, we present TrustedGateway (TruGW), a sys-
tem architecture for commodity gateway routers, which aims to

https://orcid.org/0000-0002-8549-3881

tackle this design challenge. TruGW builds on ARM TrustZone-
assisted trusted execution environments (TEEs) which provide HW-
enforced memory and I/O isolation, can be easily combined with
existing OS and hypervisor-based designs, and are widely available
in millions of edge devices [49]. TruGW provides a new trusted net-
working core with a low TCB, which provides secure network I/O
and traffic processing isolated from system-level attackers. TruGW
leverages TrustZone (TZ) to protect the core’s memory and grant
it exclusive NIC access. That way, TruGW’s network core has full
control over the gateway’s ingress and egress path and can guar-
antee the enforcement of trusted network policies. In particular,
TruGW shows how to solve several technical challenges: (i) enable
fast, trusted network I/O in spite of TZ’s high context switching
overhead, (ii) after NIC isolation, re-establish network access for
commodity services without breaking security or compatibility, and
(iii) allow for trusted policy configuration—all while preserving a
low TCB.

Technically, TruGW implements a minimal NIC I/O framework
in TZ’s secure world, which provides essential network and link
layer abstractions, and realises trusted routing and firewalling on
top of it. Trusted policies are configured by authenticated remote
administrators via a new trusted configuration service. TruGW’s
framework enables to incorporate only the essential I/O parts of
physical NIC drivers into TZ, which preserves a low TCB. To over-
come TZ’s slow context-switches, TruGW designs a trusted, light-
weight notifier and worker system for efficiently scheduling trusted
NIC I/O, while keeping the system scheduler and threading in the
untrusted world for a better compatibility and TCB. For supporting
commodity services, TruGW implements a Virtio-based network
device in TZ, which exposes a virtual NIC to the untrusted system
for shared network access. However, to prevent network attacks
by untrusted services (e.g. ARP spoofing), TruGW tightly controls
and filters their traffic.

We realise an open-source prototype of TruGW! by extending
an existing TEE with ~10.5 k lines of TruGW-specific code. We
evaluated this prototype on the Nitrogen6X dev board [16], which
nicely resembles the hardware configuration of small commodity
gateways. Our proof-of-concept illustrates how TruGW efficiently
enforces trusted routing and firewall policies even under a system-
level compromise, and thus re-establishes trust in commodity gate-
ways and their millions of consumer and enterprise networks.

In summary, we make the following contributions:

o We raise awareness of the serious risk of remote system
compromises of commodity network routers, how they
undermine firewall policies, and why existing defenses fall
short of efficiently protecting consumer and SME routers.

e We design TrustedGateway (TruGW), an architecture which
efficiently enforces trusted routing and firewall policies
under a system compromise on stand-alone commodity
gateways. TruGW is tailored to balance security, perfor-
mance, and compatibility for seamless consumer and SME
deployment.

e TruGW provides a TEE-tailored networking framework,
and implements a TEE-located Virtio-net device to support

Prototype available at: https://github.com/trugw

Fabian Schwarz

controlled network access by untrusted auxiliary or OS
services.

e TruGW provides a low TCB, trusted web service for re-
mote policy management with a secure admin enrollment
process.

e We implement a TruGW prototype! and evaluate its at-
tack surface, network performance, and secure memory
overhead.

2 MOTIVATION

Gateway routers play a critical role for the security of consumer
and enterprise networks. They isolate and interconnect internal
client and server subnetworks, and their network firewalls serve as
central gatekeepers for all ingress and egress network traffic. The
gateways’ central role makes them attractive targets for a network
infiltration putting intruders in an ideal position for attacks. While
gateways are widely assumed to be trusted, their number of services
has drastically increased over the years and so did their attack
surface. In fact, gateways nowadays fulfill a plethora of auxiliary
functionalities beyond secure traffic control, including proxies to
cloud services, edge computing, and typical consumer services such
as file sharing, VoIP, streaming, or network monitoring. Table 2 (see
Appendix) shows that popular gateway platforms therefore derive
from large commodity OSes, typically Linux, to easily integrate
such services.

This software stack composition opens up a huge attack surface.
Table 6 (see Appendix) presents recent CVEs of popular network
devices, that enable remote attackers control over a gateway’s net-
work policies or even the whole system—bypassing any kind of
system-level defense. In fact, all these vulnerabilities lurk in auxil-
iary services and system software unrelated to the security-critical
core networking components (e.g., firewalls). For instance, Table 4
shows 12 popular auxiliary network services on DD-WRT [18]
routers, which together already include a large, error-prone code
base of ~4517 k LOCs. In addition, Table 3 shows that the widely-
used Linux kernel (Table 2) has faced thousands of CVEs of which
~10 % directly result in malicious code execution (CE)—with new
ones getting steadily discovered [55, 56, 64]. In contrast, less than
100 CVEs have been reported for the Linux kernel firewall and
Ethernet NIC drivers together with merely ~3 direct CEs. However,
the plethora of kernel and remote service vulnerabilities enable
attackers to fully compromise gateways, and thus undermine also
their security-critical components and policies.

Figure 1 shows exemplary consequences of such an insecure
gateway in a small enterprise network. The central gateway inter-
connects an isolated guest, client, and multiple server subnetworks.
The gateway firewall permits guests and clients to access exter-
nal networks only through a traffic-filtering proxy. Furthermore,
clients can access only servers of their work department, and the
firewall heavily filters external ingress traffic. However, any vulner-
able service on the gateway undermines these policies. Attackers
can compromise the gateway using a remote code execution (RCE)
against a service and perform a privilege escalation (e.g., kernel
exploit) to gain access to the firewall policies. (1) A malicious guest
could manipulate the firewall policies to bypass the proxy for direct
external network access (e.g., to launch a spam campaign). (2) A

https://github.com/trugw

TrustedGateway: TEE-Assisted Routing and Firewall Enforcement Using ARM TrustZone

________ 1 external
i) ¢ Gatewayl| oorks
5 : Router |
5 :
gl : - — 2
Ra) N E S Y booooo000 [&
3 H . O
8 .. VY: : wuinerable « lexternal
5 i} iAux Sevice] |intrusion
2 —y
z U i |1

Figure 1: Three critical attacks enabled by vulnerable auxil-
iary services that undermine a gateway’s network policies.

malicious or malware-infected client can bypass the server isola-
tion to sabotage or steal internal secrets. Lastly, (3) if vulnerable
gateway services are exposed to the public (e.g., file sharing), they
enable external attackers to infiltrate the enterprise network.

Our goal is to re-establish trust in gateways by designing TruGW,
a new architecture for commodity network gateways, which en-
forces authenticated routing and firewall policies even when the
auxiliary services or system software are compromised. That way,
our envisioned gateway significantly hardens the security of enter-
prise networks by eliminating the discussed threats. Furthermore,
TruGW strengthens millions of home networks by hardening con-
sumer routers, which include a plethora of auxiliary features (e.g.,
media, IoT), by providing secure traffic isolation and filtering.

2.1 Threat Model

TruGW relaxes the strong bastion host assumption for all gateway
router software except of the “core networking” features—routing
and firewall. We build on the common threat model which assumes
a gateway located at the network perimeter and a set of internal
(int.) and external (ext.) network clients trying to circumvent the
gateway’s security policies (cf. Figure 1). Motivated by the discussed
plethora of gateway CVEs, we extend this model for TruGW in that
we tolerate a system-level attacker (Sysgyw) which has gained major
control over a gateway’s software stack, including all auxiliary
services, the OS, and, if available, the hypervisor (cf. Section 3). After
a compromise, Sysgy Will attempt to leverage their central position
to perform man-in-the-middle attacks, tamper with routing rules,
and bypass firewall policies for full network access. We only trust
verified admins which remotely manage the networking policies
via secure configuration requests from trusted devices.

TruGW will root its security guarantees in hardware by lever-
aging CPU-provided secure containers (a.k.a. TEEs) for protecting
the network traffic and policy enforcement. We therefore trust
the gateway’s CPU and all hardware bound to the TEE. Further-
more, we trust the software in the TEE—our trusted computing base
(TCB)—and assume it to be free of vulnerabilities. While we regard
Sysgw in control of all non-TEE software, we exclude side-channel,
denial-of-service (DoS), and all forms of physical attacks.

3 TOWARDS SECURE NETWORK GATEWAYS

We will now outline TruGW’s design goals and requirements and
discuss in how far alternative solutions fall short of fulfilling them.

3.1 Goals and Requirements

The goal of TruGW is the protection and guaranteed enforcement of
a gateway’s traffic routing and firewalling even under a full system
compromise. In addition, we want TruGW to be easily integrable
into commodity gateways without extra costs for wide adoption in
home and (small) enterprise networks. TruGW therefore must build
only on commodity hardware features and refrain from changes to
a gateway’s system software. At the same time, the interplay with
existing gateway OSes and auxiliary services has to be efficient, and
the architecture itself feature a small TCB that can be easily audited.
We derive the following seven security (SR) and four auxiliary (AR)
requirements that TruGW’s design will fulfill:

SR1 Secure Network Setup. The setup phase must prevent unau-
thenticated network communication until the firewall has
initialized a restrictive or restored a trusted state.

SR2 Routing and Firewall Isolation. The integrity of the rout-
ing and firewall components must be guaranteed.

SR3 Mandatory Policy Enforcment. The enforcement of the
routing and firewall policies must be guaranteed.

SR4 Traffic Protection. The untrusted system must not be able
to access (confidentiality) or tamper with traffic (integrity)
not explicitly destined to it. This includes all forward traffic.

SR5 Spoofing Prevention. The untrusted system must not be
able to spoof network addresses (e.g., MAC, IP).

SR6 Trusted Policy Changes. Only authenticated remote ad-
mins must be able to perform trusted policy changes.

SR7 Attack Surface. The trusted computing base (TCB) and ex-
posed attack surface must be small.

AR1 Commodity hardware. The design must build only on
cost-efficient commodity hardware applicable to network
routers.

AR2 Service Compatiblity. The design must support existing
untrusted gateway OSes and auxiliary (network) services.

AR3 Minimal Changes. The design must require only minimal
changes to the untrusted commodity system software.

AR4 Network Overhead. The design must only introduce rea-
sonably small network performance overhead to stay at-
tractive to consumers and enterprises.

To achieve these goals, TruGW’s idea is to leverage ARM Trust-
Zone (TZ)—a widely available commodity TEE [49]—to isolate the
network I/O path from the compromised system, and design new,
trusted networking components. That way, even system-level at-
tackers (Sysgw) can neither tamper with network traffic or policies,
nor bypass them. However, it is particularly challenging to come
up with a design that fulfills multiple, partially conflicting goals,
especially considering the complexity of network subsystems. For
example, backwards compatibility (ARI-3) is often in conflict with
new efficient security technologies (AR4) and might require addi-
tional, TCB-increasing frameworks (SR7), while a small TCB might
limit the performance (AR4) or functionality (e.g. SR3). TruGW’s
main contribution is therefore to solve this design challenge and
several additional challenges resulting from it (cf. Section 4 and 5).

3.2 Design Tradeoffs and their Shortcomings

Several related attempts follow similar objectives than our envi-
sioned trusted gateway, yet fall short of fulfilling important security

guarantees and/or deployment requirements. We now discuss these
approaches and their shortcomings w.r.t. TruGW’s properties, and
motivate TruGW’s decision in favour of a TrustZone-based design.

Dedicated Devices. Moving core networking services to dedi-
cated devices could be seen as an intuitive solution to our depicted
problem. While such a physical separation removes potentially
vulnerable auxiliary services from the core networking devices,
even dedicated routers/firewalls still have a high attack surface,
including a full commodity OS (SR7). In addition, the extra devices
introduce additional prime, energy, and maintenance costs (AR%).
Furthermore, the declined usability (lack of auxiliary services) and
the resulting need for multiple devices destroys a core marketing
argument of feature-rich routers (related to AR2).

SmartNICs and P4. In-network firewalls have been proposed for
scalable enforcement isolated from vulnerable gateway systems.
FlowBlaze [51] enables stateful network functions on SmartNICs for
high scalability, whereas Kang et al. [28] introduce context-aware
policy enforcement on P4-programmable SDN switches. While
these solutions promise great scalability and security, they are too
expensive, complex (related to AR2/3), and “bulky” (form factor)
for consumers and smaller enterprises (ARZ). In contrast, TruGW
focuses on protecting exactly these millions of users by providing
them with an affordable gateway design for commodity hardware.

Intel SGX. Gateway designs based on Intel’s commodity,
hardware-isolated user space containers—so-called Intel SGX
enclaves—suffer from their missing hardware control [14]. They
cannot guarantee secure network policy enforcement on a stand-
alone gateway, because they can neither directly access the NICs nor
prevent attackers from doing so (SR1/3/5). Alcatraz [2] enforces fire-
wall rules and traffic protection, but requires SGX support on every
enterprise middlebox, switch, and host for per-hop tunnels (ARZ).
SafeBricks [50] and LightBox [17] securely offload middleboxes to
an untrusted cloud provider using SGX, but must assume a trusted
enterprise gateway to tunnel traffic to them (Sysgw). SENG [57] uses
SGX on the client-side to enforce trusted per-application firewall
policies on the gateway, but assumes the gateway as trusted (Sysgw).
TruGW’s focus is on providing such a secure design for stand-alone
gateways, i.e., we close a gap of existing orthogonal designs.

Virtualization. Hypervisors enable a secure containment of com-
promised OSes and support secure I/O paths. Advanced gateway
platforms by Cisco [10] and Juniper [27] already support VMs
for running third-party user space services. However, for our en-
visioned gateway, hypervisors face two main limitations: a high
attack surface (SR7), and compatibility issues (AR3/4). Following
ideas of VMwall [59], a gateway could use a hypervisor to protect
the network processing inside the host VM (“dom0”) against a com-
promised gateway OS. However, Table 3 (see Appendix) shows that
commodity hypervisors like Xen [20] or QEMU/KVM face a high
attack surface, which is even further increased by the dom0 OS—
by default a full-blown Linux. Even when splitting core services
into multiple VMs (similar to QubesOS [34, 52]), the TCB stays
large (SR7). Minimal, so-called micro-hypervisors have a low TCB
but are by design functionally limited, e.g., to a single VM without
isolated I/O, which makes efficient secure I/O difficult (AR4) [8]. Fur-
thermore, the use of security micro-hypervisors is in conflict with

Fabian Schwarz

Tp: Trusted World (TEE OS)

o [rafc: NetTrug : rafic [
z :| Routing | [Firewall | e =
§ -;il-té;éc-!:--.\}-.-.-f.-.: """"
‘Q?g auxiliary " T " Uptraffic
SRR Viedia [web uis
§ o Kernel (threads, files, ...)
o < Up: Untrusted World (Network OS)

Figure 2: Design overview of TruGW with the new (dashed)
trusted NetTrug and VNIC (dark: untrusted, light: trusted).

deployed commodity gateway hypervisors, and therefore either
(a) requires slow, complex nested virtualization (SRZAR4), (b) deep
integration with gateway hypervisors (AR2/3), or (c) can only sup-
port gateways without hypervisors. McCormack et al. [45] have
proposed such a micro-hypervisor-based secure gateway, however
their concept fails to guarantee traffic protection and policy en-
forcement against system-level attackers (SR3/4). Zhou et al. [67, 68]
used micro-hypervisors to build minimal TCB, trusted I/O paths
from applications to specific device classes, but have not focused on
NICs or network policies (SR#-6). TruGW’s minimal TCB efficiently
enforces and protects secure networking against Sysg., even if they
control a gateway hypervisor (cf. Section 2.1).

ARM TrustZone. TruGW builds on ARM TrustZone (TZ)?, be-
cause TZ makes an ideal candidate for a secure network gateway
due to its hardware-enforced memory and I/O isolation, and its
widespread availability [49]. TZ provides hardware primitives for
ARM-based TEEs, i.e., secure containers for hosting code and data
isolated from all system software. Unlike Intel SGX, TZ is a system-
level TEE and additionally features device isolation. TZ extends
all system resources—including CPU, memory and devices—with a
security state and supports HW-enforced access control rules based
on the states [48, 49]. TZ’s features enable stand-alone security
architectures with trusted I/O similar to hypervisors, but with a
potentially very small TCB (cf. OP-TEE in Table 3, Appendix) and
without being in conflict with deployed gateway hypervisors. In
fact, TrustZone has been used for many domains like trusted user
1/O [35, 66], trusted peripheral access [31, 41], and secure stream
processing [48]. However, none of these approaches explore the
protection of a gateway’s network path and policy enforcement
(SR#-6). Even though StreamBox-TZ [48] proposes exclusive NIC
access by trusted components for stream processing performance, it
simply assumes trusted networking stacks and NIC isolation as an
available black box. In fact, StreamBox-TZ neither provides details
about networking, nor considers network policies, nor access by
untrusted services (SR1-6;-AR2-4). To the best of our knowledge,
there is no such trusted networking support fulfilling all require-
ments for secure gateways. Therefore, TruGW designs new trusted
networking components as part of its secure gateway architecture.

TrustedGateway: TEE-Assisted Routing and Firewall Enforcement Using ARM TrustZone

4 TRUGW’S DESIGN

We now describe TruGW'’s gateway design and mention challenges
it had to solve. To highlight how TruGW fulfills the requirements
outlined in Section 3.1, we refer to them at relevant passages. We
provide additional details of TruGW’s architecture in Section 5.
TruGW’s main idea is to isolate network I/O and critical “core”
gateway functionalities from a gateway’s error-prone auxiliary
services and system software. That way, TruGW’s network “core”
keeps full control over the network traffic and can guarantee secure
policy enforcement even on a service or system compromise. As
shown in Figure 2, TruGW uses a TrustZone-assisted TEE to divide
the gateway architecture into an untrusted (Up) and a memory-
isolated trusted (Tp) partition. The untrusted Up runs a gateway
OS—in the following called network operating system (NOS)—which
hosts the auxiliary services and commodity kernel. The trusted
Tp hosts the TEE OS and all core components of TruGW, i.e., our
TCB. TZ-assisted TEEs [40, 42] have a minimal TCB (SR7) with
few CVEs (Table 3, OP-TEE), however, at the cost of a very limited
secure runtime dedicated to small, Up-exposed RPC services, e.g.,
trusted key storage [44]. Current TEE OSes are not designed for
fast, I/O-intense tasks and thus neither support trusted network I/O
nor traffic processing. Therefore, TruGW designs a new TZ-tailored
networking core in Tp called NetTrug. NetTrug includes new mod-
ules for trusted network I/O, routing, and firewalling isolated from
Up attackers (cf. Figure 2). Policies are remotely configured via
a new trusted interface (§4.3). To preserve compatibility with Up
services under an isolated network path, TruGW implements a new
trusted virtual network device called VNIC, which together with
NetTrug provides Up with tightly-controlled network access (AR2).
We will now present how TruGW tackled the following major
challenges: (i) achieve fast, trusted networking in spite of TZ’s high
context-switch overhead, (ii) securely share network access with Up
services without breaking security or compatibility, and (iii) provide
trusted policy configuration—all while preserving a low TCB.

4.1 Trusted Networking

In a commodity gateway, the network I/O and processing is per-
formed by drivers and services typically located in the NOS kernel.
The NIC drivers form the I/O interface to the NICs while the services
perform essential tasks, e.g., routing. However, their location makes
them fully controllable by Up system-level attackers enabling them
to tamper with all traffic and bypass any security policy. To guaran-
tee secure traffic and policy processing (SR1-4), NetTrug therefore
revokes Up’s NIC access and provides trusted networking in Tp.

I/O and Scheduling. First, NetTrug must enable trusted NIC I/O
paths. NetTrug therefore protects the NICs against Up and supports
trusted NIC drivers in Tp. NetTrug protects a NIC’s I/O interfaces
in Tp: memory-mapped device registers, shared I/O rings, and in-
terrupts. Device registers enable drivers to interact with a NIC
and especially configure the memory location of the I/O descriptor
rings. These rings contain information about processable network
buffers and by default reside in unprotected system memory to-
gether with their buffers. Descriptor changes are signaled via NIC

2Qur current focus is mainly on ARM TrustZone for Cortex-A (TZ-A).

interrupts and device registers [13]. If these interfaces stay unpro-
tected, Up attackers can tamper with network traffic inside the I/O
buffers or directly interact with the NICs and thus bypass any policy
(SR1-4). Therefore, NetTrug leverages TZ’s Protection Controller
(TZPC) [49] to bind all NICs exclusively to the trusted kernel space
(T{f) from boot on (SR1). That way, TZ blocks all Up access attempts

to the NIC registers and securely redirects all NIC interrupts to Tflf.

To protect the I/O rings and enable trusted I/O operation,
NetTrug requires trusted NIC drivers inside Tllj . However, cur-
rent TZ-assisted TEEs [40, 42] have no support for network I/O.
Naively, we could try to port existing drivers to Tp, but this raises
several technical challenges: a full port would massively bloat
the TCB (SR7), because drivers heavily depend on large, kernel-
integrated driver frameworks and include many management func-
tions beyond I/O. Furthermore, driver frameworks assume fast
interrupt and threading support, which is either (i) not available in
Tp due to TZ TEEs [40] relying on Up for scheduling, which suffers
from costly TEE context-switches and limitations in interrupt con-
texts (cf. §5.1) (AR4), or (ii) requires secure hardware timers [42]
and respective Up system-level changes for a TZ-tailored system
scheduler—violating TruGW’s goal of a low TCB design for com-
modity gateways (SRZARI+3).

Instead, NetTrug designs two new trusted kernel frameworks
in Tp: a NIC I/O framework with partial driver integration, and
a notifier and worker framework for efficient I/O scheduling. To
keep the TCB small (SR7), NetTrug’s I/O framework implements
only the essential network and link layer abstractions required for
/O operations of NIC drivers, e.g., packet queues and NIC device
interfaces. Furthermore, NetTrug splits each NIC driver in two parts:
a trusted I/O part (T4,) and an untrusted auxiliary part (Uy,). As
shown in Figure 3, NetTrug integrates only the trusted part T, into
TI]f , but keeps Uy, in the untrusted network OS. Ty,,, protects the
NIC I/O descriptor rings in Tp memory, handles NIC interrupts, and
securely performs I/O isolated from Up attackers (SR4). Uy, has no
NIC access and only handles uncritical tasks on behalf of Ty, (split
details in §5.2.1). To enable fast but compatible, low TCB I/O paths
(SR7,AR1+3-4), NetTrug keeps the system scheduler and threading
in the Up NOS and instead designs new trusted NIC I/O workers.
These workers build on lightweight, Up-scheduled TEE OS threads,
but are designed to minimize costly TZ context switches to Up and
be notifiable by trusted interrupt handlers. They are scheduled via a
new trusted notifier on packet events, and run all NetTrug network
tasks, incl. Ty, (details: §5.1). Combined, these frameworks ensure
that NetTrug has exclusive control over the gateway’s ingress and
egress network paths and can efficiently perform secure NIC I/O
even under a full Up system compromise (SR1+4,AR4).

Routing and Firewall. For secure networking, NetTrug addition-
ally requires trusted traffic routing and filtering—features entirely
missing in current TEE OSes. However, we cannot directly port
existing network stacks into TZ. Similar to driver frameworks, they
consist of large modules which would bloat the TCB (SR7) and
heavily rely on threading and synchronization primitives not ef-
ficiently available in compatible TEE OSes (AR#+3-4). In addition,
these stacks are not designed to defend against Up system-level
attackers (SR1-5). Therefore, NetTrug designs new TZ-aware net-
working modules on top of its I/O and worker frameworks. In

Up: Normal World (NOS) Tp: Secure World (TEE OS)

g‘ux'"aw SockHeIper ;
ervices :

NOS kernel
+ Socket API
Z TCP/IP Stack

user

U traffic path
-]

Virtio-
MMIO Virtio-Net Driver

supervisor (kernel)

—> net. traffic [Ftrusted i new ! f *
------- > config flow [Muntrusted [port/patch*! | NIC |

Figure 3: The TruGW architecture with untrusted (dark) and
trusted (light) components. New components are marked
with dashed lines; heavily ported or patched ones with stars.

contrast to existing stacks, NetTrug focuses on the security-critical
“core services”—routing and firewall—and explicitly excludes client
protocol and socket stacks (e.g., TCP/IP) from Tp to minimize the
TCB [69] (SR7), as shown in Figure 3. NetTrug’s exclusive NIC
control guarantees secure traffic processing by its networking mod-
ules (SR3-4). NetTrug introduces trusted and untrusted network
interfaces on which its workers enforce trusted routing and firewall
policies. NetTrug maps all physical NICs to trusted interfaces by
default, and can enforce extra routing and filter rules on untrusted
interfaces. In §4.2, we will explain how NetTrug and its virtual
VNIC device securely enable tightly-controlled network access to
Up services via an untrusted network interface. For traffic filtering,
NetTrug incorporates a network firewall into its trusted networking
frameworks. NetTrug assumes at least a stateful L3/L4 firewall for
secure, efficient traffic protection, but is conceptually oblivious to
the concrete firewall capabilities (cf. §5.1). In contrast to commodity
gateways, NetTrug securely manages trusted routing and firewall
policies in Tp and guarantees mandatory policy enforcement. Up
attackers can neither bypass nor tamper with these policies (SRI-3).

4.2 Securely Sharing Network Access

As NetTrug isolates all NICs and processes their traffic securely
in T}],< , any direct network access by Up attackers is blocked (SR4).
However, as NetTrug focuses on trusted network I/O and security-
critical services (SR7), all remaining gateway services stay in Up and
become unreachable. To resolve this compatibility issue, TruGW
designs VNIC, a new virtual network device that performs secure
traffic forwarding between Up and Tp. In contrast to commodity vir-
tual network devices [47], VNIC is tailored to TZ and integrated into
NetTrug’s networking frameworks. Together with VNIC, NetTrug
enables tightly-controlled network access for Up services (AR2).
From Up’s point of view, VNIC exposes a memory mapped
Virtio-net device, i.e., a virtual ethernet card with a low TCB mem-
ory interface (Virtio-mmio) following the Virtio standard [47] (SR?).
That way, the Up NOS can use its builtin Virtio drivers (AR3) to
initialize a network interface to VNIC, which serves as Up’s default
interface for all network I/O (cf. §5.2.2). The interface is configured
with all IP addresses of the gateway. As a result, Up services need

Fabian Schwarz

not be modified and can use the standard socket API and TCP/IP
stack of the NOS for their network communication (AR2).

From Tp’s point of view, VNIC is a special trusted NIC driver
associated with an untrusted NetTrug network interface. VNIC per-
forms the buffer I/O between the untrusted Up Virtio-net driver and
NetTrug. VNIC’s virtual I/O rings are located in untrusted memory
shared with the Up driver (virtqueues, Figure 3). Therefore, VNIC
must securely copy network buffers between the rings and Tp and
check that untrusted buffers never overlap with trusted Tp memory.
That way, VNIC prevents traffic tampering and memory attacks by
Up system-level attackers and enables NetTrug to securely process
the network buffers in protected Tp memory (SR3, SR4).

VNIC provides an explicit, secure path to Up services and thus
enables NetTrug to make them reachable again. However, NetTrug
must enforce additional security measures on the VNIC-associated
untrusted network interface to protect forward traffic against Up
(SR4) and prevent address spoofing attacks by Up-located attackers
(SR5). By default, NetTrug routes traffic only to Up if it is explicitly
destined to one of TruGW’s IPs. That way, the forward traffic stays
isolated from Up (SR4) and avoids additional I/O overhead (AR4). To
prevent spoofing by Up (SR5), NetTrug replaces the source MACs of
all egress traffic with those of the output interfaces, drops packets
from Up with spoofed source IPs, and handles Up’s host discovery
messages locally in Tp (§5.3.1). In addition, TruGW enables trusted
admins to define firewall policies directly on the VNIC interface to
tightly control network access from and to Up, as discussed next.

4.3 Trusted Policy Configuration

Administrators are used to manage network policies using a NOS-
provided Up web application. However, any configuration service
inside Up gives system-level attackers full control over a gateway’s
policies (SR3+6). Naively, we could isolate a configuration service
in Tp and make it remotely reachable directly via NetTrug. Yet this
would require a full network and web stack in NetTrug (incl. a
full-fledged web server, TCP/IP stack, and socket API), leading to a
stark increase in its TCB size and attack surface (SR7).

Instead, TruGW offers a web-based configuration that does not
require these complex software stacks. To this end, we introduce
ConfigService, a new tiny Tp userspace service for secure remote
configuration of NetTrug’s trusted network policies (cf. Figure 3).
ConfigService provides authenticated admins with a trusted web
application for policy management (SR6) while offloading web re-
sources and the connection handling securely to Up for a low TCB
(SR7). ConfigService includes a new minimal (~2.1k LOCs, plus TLS
library) HTTPS endpoint to handle TLS sessions with admins and
ship a web interface to their browsers. To minimize the TCB (SR7),
ConfigService securely offloads the TCP socket management to Up;
a new untrusted userspace service (SockHelper) handles the TCP
sockets for ConfigService and forwards the protected TLS records
between the Up network stack and ConfigService (Figure 3). That
way, ConfigService requires no TCP/IP or socket stack inside Tp.

SockHelper makes ConfigService remotely reachable via VNIC.
However, Up attackers become strong on-path MITM attackers as
they control the shared Up TCP/IP stack. While TLS provides end-to-
end protection between admins and ConfigService, ConfigService
must additionally prevent impersonation and web attacks by Up

TrustedGateway: TEE-Assisted Routing and Firewall Enforcement Using ARM TrustZone

(SR6). Therefore, TruGW introduces a dedicated trusted web address
(domain or IP) for ConfigService and supports a secure enrollment
process for establishing credentials for mutual TLS authentication.
The trusted address guarantees a different web origin than Up
services even though the TCP/IP stack is shared and thus enables
ConfigService to prevent web attacks by Up (cf. Section 5.4). During
the enrollment process, TruGW generates a TLS server certificate
with ConfigService’s trusted address and registers a TLS client
certificate for a master admin. Admins then submit their own TLS
client certificates to ConfigService and get them approved by the
master admin. By leveraging TLS client certificates, TruGW avoids
password-related security issues [21], reduces the risk of phishing
attacks, and can benefit from TPM-based storage back-ends [43].

Policy Translation. TruGW avoids inventing new policy lan-
guages to ease adoption. ConfigService uses a standard routing
syntax (similar to ip-route [30]) and the vanilla firewall syntax
(cf. §5.1) for configuration. In addition, ConfigService enables the
reconfiguration of TruGW’s IPs (cf. §5.3.2). Admins can reuse exist-
ing policies and further restrict services running on the gateway by
defining new routing and firewall rules for the VNIC interface. The
VNIC interface enables admins to explicitly control traffic from and
to untrusted Up services and ConfigService. Comparing to a com-
modity firewall configuration tool like iptables, firewall rules on
NetTrug’s physical NIC interfaces roughly translate to iptable’s pre-
/postrouting and forward chains, while rules on the VNIC interface
roughly translate to iptable’s input and output chains.

5 TRUGW DETAILS AND IMPLEMENTATION

We will now present the details of our TruGW architecture. We
picked Linux as the Up OS, given that many commodity gateway
NOSes are derivatives of Linux (cf. Table 2, Appendix). For the
TEE, we chose OP-TEE [40] as it is a well-known, open-source
TEE for TZ with upstream Linux support, and a low TCB (SR7,
cf. Table 3). Our implementation targets an . MX6 SoC [58], which
features a TZ-compatible Central Security Unit (CSU) for device
isolation and a TZ Address Space Controller (TZASC) [49] for the
memory partitioning. Without sacrificing generality and for ease
of discussion, we assume an Ethernet-based router that operates in
an IPv4 network.

5.1 TEE Integration and Networking

TruGW’s security is rooted in the integrity of its Tp components and
boot process. Therefore, TruGW leverages secure boot to guarantee
that only trusted bootloader and TEE images are loaded (cf. Ap-
pendix A). TruGW’s trusted kernel (TII,c) components (cf. Figure 3)
extend OP-TEE’s kernel and are therefore verified as part of the
TEE images (SR2). The trusted bootloader includes a device tree
(DT) blob [39] which describes all hardware components of the
system. On TEE boot, NetTrug parses the DT to bind all NICs to
Tp by configuring them as secure in .MX6’s CSU® [33] and thus
protect them against Up (cf. §4.1). To prevent early boot attacks by
Up, TruGW transfers control to the Up bootloader only after all
protections have been successfully set up (SR1I).

3a TZPC or an other SoC-specific technology can replace the CSU

Trusted Networking. NetTrug is TruGW’s central extension to
the trusted TEE kernel. NetTrug mediates all gateway traffic and
securely performs trusted network I/O and policy enforcement in
T}],C (cf. §4.1). On TEE boot, NetTrug initializes one trusted network
interface for each NIC and one untrusted interface for VNIC and
allocates an egress queue, ARP cache (cf. §5.3.1), I/O workers, and a
configurable, static IP address (cf. §5.3.2) to each of them. NetTrug
tags untrusted interfaces, s.t. its routing and firewall modules can
enforce special restrictions on them, e.g., to isolate trusted forward
(and broadcast) traffic and prevent spoofing attacks by Up (SR4-
5; cf. §4.2, 5.3.1). For packet filtering, NetTrug incorporates the
stateful, BPF-based L3/L4 firewall NPF [54]. To this end, we ported
NPF to OP-TEE and NetTrug’s worker framework, and integrated
it as a callable firewall module into NetTrug’s networking loop,
where NPF enforces trusted filter rules on given IP packets. We
picked NPF as it is well-known (NetBSD’s firewall) and feature-rich.
However, conceptually, NetTrug could adopt additional firewall
modules (e.g., application level) as trusted kernel or user modules.

NetTrug’s new I/O workers perform the actual traffic processing
for each interface securely in T}]f using a polling-based I/O model.
On setup, NIC drivers (incl. VNIC) request I/O workers for their
interfaces and allocate device-specific I/O callbacks to them. On a
packet event (e.g., signaled by an interrupt handler), workers poll
and process all current RX (or TX) packets of their assigned NIC,
before reentering a sleep state. They perform a typical I/O loop:
(i) Ethernet RX via driver, (ii) link layer processing, (iii) ingress
filtering and IP routing, (iv) egress filtering and ARP resolution,
(v) egress enqueueing, and (vi) packet transmission via driver.

NetTrug’s Workers. For TruGW to be practical, it is crucial that
TruGW’s trusted networking causes only a small performance
penalty compared to commodity gateways (AR4). While TruGW and
OP-TEE both follow the idea of keeping full scheduling and thread-
ing stacks in Up to preserve compatibility and a low TCB (cf. §4.1),
OP-TEE’s approach is not suitable for efficient NIC I/O. OP-TEE re-
lies on Up threads to call into the TEE for service and assigns them
lightweight TEE tasks (a.k.a. threads) on entry. This design causes
high overhead on thread switches and synchronization—both om-
nipresent in networking cores—due to costly context switches be-
tween Tp and Up. In addition, it is not possible to schedule TEE
tasks from trusted interrupt handlers as required for NIC I/O, be-
cause the Up APIs are context-switching and thus not callable from
interrupt contexts [29] (details on OP-TEE’s design are given in
Appendix B).

NetTrug’s trusted workers build on lightweight (OP-)TEE
threads, but overcome their limitations. NetTrug exposes a new,
minimal worker registration interface to Up, which a helper ser-
vice uses to provide a pool of Up threads. One thread registers as
NetTrug’s notifier and the others as workers. NetTrug’s networking
modules (e.g., drivers) can request scheduling of a worker using a
new dedicated T}f API (similar to NAPI [13]). The API directly flags
a worker without any context switch and is thus also callable from
trusted NIC interrupt handlers, e.g., on a packet event. NetTrug’s
notifier periodically checks for flagged workers and if sleeping,
wakes up their associated threads using Up’s scheduler. As the
worker’s sleep and wake-up operations fall back to costly context

switches to Up, NetTrug minimizes their number using several op-
timizations, e.g., I/O batch processing, notification coalescing on
multiple packets or full queues, and a grace period of idling before
putting worker threads to sleep. That way, NetTrug keeps the per-
formance penalty low (cf. §7.3) while preserving a Up-compatible,
low TCB design.

5.2 Trusted Network Device I/0

5.2.1 Split NIC Driver Operation. NetTrug’s network I/O and
worker frameworks provide the essential support required for se-
cure and efficient NIC driver I/O in Tp. As full NIC drivers would
bloat the TCB (SR7), we split them and port only the critical, I/O
relevant driver parts to OP-TEE and NetTrug while keeping the
uncritical rest in Up (cf. §4.1). On Tp boot, the secure subdriver T,
registers a trusted network interface and I/O workers on NetTrug
for the NIC and securely allocates the NIC I/O descriptor rings in
Tp. Combined with the NIC’s Tp-binding established by NetTrug
(cf. §5.1), the NIC is in a clean and protected state before the un-
trusted NOS starts booting (SRI). On Up boot, the untrusted sub-
driver Uy, is responsible for performing uncritical configuration
tasks (e.g., power management) [68] and starting the physical Eth-
ernet device of the NIC (PHY).* However, the NIC protection blocks
any access attempts by Uy,,, to a NIC, s.t. they result in a data abort
(DA). Therefore, Ty, registers a secure DA handler. That way, if
an uncritical Uy, task requires a one-time NIC access (e.g., PHY
startup), Ty, can trap the access fault in Tp, decode it [33], and se-
curely perform the access on behalf of Ug,.,. After boot, the trusted
NIC workers securely perform the NIC I/O and the packet forward-
ing between the NICs and NetTrug. T, securely handles the NIC’s
I/O interrupts in Tp and forwards uncritical ones to Uy, if required.
Uy is not involved in the I/O phase, which enables a secure, low
overhead operation (SR2-4, AR4).

5.2.2 VNIC Device I/0. We designed VNIC’s Up-interface based
on Virtio-net and Virtio-mmio [47] to make it compatible with
commodity NOSes and drivers (AR3) while having a small TCB
(SR7). On Tp boot, VNIC registers an untrusted network interface on
NetTrug and extends the device tree [39] (cf. §5.1) to expose itself
as a simple (SR7), memory-mapped device to Up (Virtio-mmio).
On Up boot, Linux detects the VNIC device and uses its Virtio
default drivers to set up a network interface for Up. To enable
Up interaction, VNIC exposes virtual device registers to Up using
a dedicated memory region. VNIC protects the region from Up
via the TZASC (cf. §5), s.t. access attempts by Up trap as data
abort exceptions into Tp. On a trap, VNIC decodes the respective
physical target address [33] and maps it to its virtual device registers.
That way, VNIC can transparently detect and handle configuration
requests and I/O ring notifications by Up. On network I/O, VNIC’s
NetTrug worker receives Ethernet frames from Up or NetTrug,
securely processes and routes them, and forwards traffic between
Tp and Up (cf. §4.2 and §5.1).

5.3 Address Resolution and Assignment

5.3.1 ARP. TruGW must guarantee secure MAC address resolution
to prevent redirection and spoofing attacks by attackers in Up (SR5).

4a potential splitting of the PHY drivers is left as future work

Fabian Schwarz

Therefore, NetTrug includes a trusted ARP stack inside Tp and
performs extra checks on Up traffic. For the physical NIC interfaces,
the ARP stack handles MAC address resolution and ARP requests
securely in T},‘ . For the untrusted VNIC interface, NetTrug performs
special steps to prevent ARP spoofing attacks by Up: (a) Up’s ARP
requests are directly answered by NetTrug with a virtual MAC and
(b) Up’s ARP replies are dropped. That way, NetTrug transparently
handles Up’s ARP resolution and prevents Up from poisoning the
ARP caches of any NIC interface or of any internal or external
host (SR5). When forwarding traffic to Up, NetTrug knows VNIC’s
Up-exposed MAC and can directly use it as the destination MAC.

5.3.2 DHCP and DNS. By default, TruGW does not assign IP ad-
dresses or handle DNS queries to keep its TCB small (SR7). TruGW
has a set of static, preconfigured (yet configurable) IP addresses
(cf. §5.1). We assume that network admins reconfigure these to fit
their setup and operate a dedicated DHCP server to assign addresses
to clients. Conceptually, NetTrug could incorporate a basic DHCP
stack for smaller networks, e.g., providing gateway, client, and DNS
server IPs. However, a full DHCP server would require a UDP/IP
and socket stack inside Tp, which significantly increases TruGW’s
TCB (cf. §4.1). Regarding DNS, the current design of TruGW as-
sumes DNS to be outside of the gateway, such as a dedicated DNS
resolver or an external DNS resolver (e.g., provided by ISPs or other
entities such as Google). Either way, NetTrug protects the confiden-
tiality and integrity of DNS and DHCP communication against Up
system-level attackers using its restrictive routing and anti-spoofing
measures on the VNIC interface (SR4-5; cf. §4.2, §5.3.1).

5.4 Trusted Policy Management

TruGW must prevent unauthenticated network communication by
Up and network attackers until a trusted policy has been provided.
On startup, NetTrug therefore sets up a “restrictive boot policy”.
This policy only allows local HTTPS connections to TruGW’s con-
figuration ports, but neither outgoing Up connections nor traffic
forwarding across network clients. That way, NetTrug restricts
network traffic to local configuration sessions until a policy gets
configured via ConfigService or securely restored from disk (SRI).
ConfigService is implemented as an OP-TEE trusted user appli-
cation. Its binary is signed, integrity checked by OP-TEE on load,
and protected against version rollbacks [40]. On an admin connec-
tion, ConfigService ships only an initial tiny, integrity-checked root
HTML file. All other web resources are loaded from an untrusted
Up Apache server. That way, ConfigService can keep its latency and
memory footprint low (cf. §7.3+7.4) and does not depend on external
resources which are blocked on startup (SR1+7,AR4). ConfigService
uses subresource integrity (SRI) [1] to guarantee the integrity of
the Up-offloaded resources (SR6). Furthermore, it verifies custom
HTTP request headers to protect against cross-site request forgery
(CSRF) [3]; attacker-induced requests from different origins, e.g., by
rogue untrusted services (cf. §4.3), cannot add such custom headers.
To support NPF’s policy language, we ported NPF’s client tool to
WebAssembly [12]. It parses the NPF policies inside the trusted
admin browsers and sends BPF filters via ConfigService to NetTrug,
where they are securely parsed, compiled, and enforced.
ConfigService’s server and client authentication is based on TLS
server and client certificates, respectively. On initial boot, NetTrug

TrustedGateway: TEE-Assisted Routing and Firewall Enforcement Using ARM TrustZone

securely issues a self-signed TLS server certificate C,py for Config-
Service’s trusted web address (cf. §4.3) and stores it on rollback-
protected storage. For initial enrollment, the master admin then
connects via an exclusive physical network access to ConfigService
and uploads a securely generated TLS client certificate Cpy. In
addition, the master admin distributes Ccpy to all admins for certifi-
cate pinning (cf. §5.5) to prevent phishing and CSRF attacks against
ConfigService’s trusted address, especially by Up attackers. The
master can trust the initial C;,s on first use (TOFU) as the secure
boot (cf. §5.1), factory state of Up, and exclusive network access rule
out any device or network attacker. On completion, ConfigService
securely stores Cp,st and starts enforcing access control based on
the TLS client certificates of the HTTPS client connections. Clients
without a registered TLS client certificate can only upload a TLS
client certificate C,y,,, to request admin access, which then has to
be explicitly granted by the master. Only admins and the master
have access to the trusted routing and firewall policies. The master
can additionally revoke admin certificates or request server key
rollovers, e.g., on a key breach. An explicit trusted factory reset
(e.g., via button) can wipe all certificates for a full re-enrollment.

5.5 Deployment

TruGW has been designed with the goal to be compatible with
commodity ARM gateway routers (AR1). TruGW currently requires
ARM TrustZone with memory and device isolation (TZASC, TZPC)
and support for rollback-protected storage (e.g., eMMC with RPMB).
Tp’s secure memory demands are about 16-32 MB and therefore
easily met by many router platforms (cf. Section 7.4). Regarding
software, TruGW is compatible with commodity Linux and its up-
stream OP-TEE and Virtio drivers (AR3). The untrusted NIC drivers
(Ugy) are slightly adapted versions of the Linux drivers. Manufac-
turers can easily deploy TruGW, because its T],‘ components are
direct extensions of the OP-TEE image(s) and its ConfigService
TA and Up services can be packed into OP-TEE’s Linux software
package. TruGW is non-intrusive in that its TEE extension does
not affect other applications (ARZ2) and its Up helper services (e.g.,
SockHelper) do not require any special permissions.

Manufacturers can update TruGW using standard methods. The
untrusted and trusted userspace components (incl. ConfigService)
can be updated via regular Linux package updates. Attackers cannot
manipulate the trusted components as OP-TEE only accepts vendor-
signed TAs (cf. §5.4). TruGW’s trusted kernel components (e.g.,
NetTrug) require an update of the TEE image using existing (or
device-specific) methods for firmware updates [38]. TruGW does
not affect the way commodity Up software is updated.

Admins can follow common best practices for managing
TruGW’s TLS server and client certificates. The master admin dis-
tributes ConfigService’s server certificate Cg,y to all admins for
certificate pinning (e.g., via group policies). Up manages TLS server
certificates of untrusted Up services. Admins must vet these Up
certificates to not include the trusted web address of ConfigService
before distributing them to guarantee distinct web origins (cf. §4.3).
To ease the Up vetting, TruGW could integrate a Tp certificate au-
thority restricted to untrusted addresses (cf. RFC5280), whose cer-
tificate could then be distributed instead. Key breaches and rollovers
are securely handled by master or via a full re-enrollment (cf. §5.4).

6 SECURITY ANALYSIS

We now analyze TruGW’s security design by discussing its coun-
termeasures against critical attacks and assessing how it contains
real world vulnerabilities of commodity gateways.

6.1 Attacks and their Countermeasures

We now summarize attacks against TruGW. Many of them are
directly related to the requirements defined in Section 3.1.

Adversary Types. Following our defined threat model (cf. §2.1),
TruGW’s main focus is on system-level attackers (Sysgw) which
gained full control over Up via a remote service and system ex-
ploit. Furthermore, we assume malicious network clients located
in internal (int.) or external (ext.) networks with the goal of by-
passing access restrictions. Beyond our threat model, we assume
that adversaries might control a web page visited by an admin
(web). Finally, while we regard admins and their systems as trusted,
we also discuss the implications of a system-level attacker on the
systems of the admins (Sys,g;,) or master (Sysms:). Based on these
attacker roles, we now discuss how TruGW protects against 14
security-critical attacks shown in Table 1 (see next page).

A01: Image/Binary Tampering (SR2). The integrity of TruGW’s
Tp images (e.g., NetTrug) and device tree are guaranteed by secure
boot (cf. §5.1). Tampering with ConfigService’s binary is prevented
as OP-TEE verifies TA binaries on load and prevents rollbacks.

A02: Code/Data Tampering (SR2). Sysgy, cannot tamper with
TruGW’s Tp components using memory writes or direct memory
access. From boot on, TruGW protects Tp memory and NICs from
Sysgw using TrustZone and securely allocates all data in Tp (cf. §5.1).

A03: Policy Enforcement Bypass (SR1/3). Sysg,, cannot bypass
NetTrug’s trusted policies, because NetTrug has full control over the
NIC I/O paths from TEE boot (cf. A02) and can therefore guarantee
their enforcement. int. and ext. attackers cannot bypass TruGW’s
policies due to TruGW’s deployment at the perimeter.

A04: Direct MAC/IP Spoofing (SR5). TruGW prevents Sysg,, from
sending traffic with spoofed source MAC or IP address by replacing
the source MAC with the MAC of the resp. output NIC and by
dropping Up packets with spoofed source IP on VNIC (cf. §4.2).
To defend against int. adversaries, TruGW can securely enforce
port-based MAC pinning schemes and subnetwork isolation in Tp.

A05: ARP Poisoning/Spoofing (SR5). TruGW performs ARP re-
quest and response handling securely in NetTrug. To prevent ARP
poisoning and spoofing by Sysg., NetTrug isolates Up ARP mes-
sages by directly replying to Up ARP requests and not forwarding
Up ARP replies (cf. §5.3). For int. attackers, NetTrug can securely
enforce static routes or other common schemes (cf. A04).

A06: Traffic Tampering/Sniffing (SR4). Sysg., can neither read nor
manipulate any forward traffic or any network packet stored in
TruGW’s trusted I/O buffers. NetTrug and its secure NIC drivers
(T4y) protect the NIC I/O paths (incl. I/O rings) in Tp (cf. §4.1). In
addition, NetTrug routes only Up-destined traffic to Up (cf. §4.2).

A07: Policy Tampering (SR6). Sysg, cannot directly tamper with
trusted policies in memory or on disk. NetTrug isolates the policies

Fabian Schwarz

Table 1: Overview of TruGW’s defense measures against security-critical attacks by the adversaries defined in Section 6.1.

Target / Goal Attack Adversaries TruGW’s Defense Mechanisms Sec?
. A01: Image/Binary Tamperin SySew secure boot + signed TAs v
Comp. Integrity A02: Codi/Data T}a,lmperri)ng ¢ S)J:siw TZ mem/NIC prgotect. via NetTrug (+Ty) v
Policy Enforcement A03: Policy Enforcement Bypass Sysgw, int., ext. NetTrug’s NIC I/O and policies + perimeter v
Address Spoofing A04: Direct 1\'/IAC'/IP Spoofing SYsgw, z'nt. NetTrug’s filtering (+ port pinning, subnets) v
A05: ARP Poisoning/Spoofing Sysgw, int. NetTrug’s trusted ARP handling (+ cf. A04) v
Traffic Protection A06: Traffic Tampering/Sniffing Sysgw Tgr+NetTrug’s NIC I/O + restrictive routing v
A07: Policy Tampering Sysgw TZASC + NetTrug + secure storage v
A08: Policy Change via Auth. Bypass ~ Sysgy, int.(, ext) ConfigService’s enrollment + cert. management v/
Trusted Policy A09: Config Connection Tampering Sysgy, int. ConfigService’s protected TLS endpoint v
Configuration A10: ConfigService Spoofing Sysgw, int., web Cippinning + trusted domain/IP vetting v
A11: CSRF against ConfigService web (Sysgw) custom request header + trusted domain/IP v
A12: ConfigService File Tampering Sysgw SRI + hashing (+ signed TAs) v
Admins / Master A13: Admin/Master Compromise SYSadm> SYSmst TPM + TEE browser + secure user I/0O)
Leakage A14: Covert Channel (Hdrs,Time) int., ext. (Sysgw) filters + traffic tunnels + time masking V)

in Tp memory and allows changes only by ConfigService. Disk
backups are protected via OP-TEE’s secure storage APL

A08: Policy Change via Auth. Bypass (SR6). Sysg, and int. cannot
modify trusted policies (or IPs) via ConfigService, because only
master and admins have access. In addition, the initial master en-
rollment is secure, because the gateway (incl. Up) is in a secure boot
state and the master has exclusive device access (cf. §5.4). After-
wards, master grants only trusted admins access to ConfigService
and blocks any malicious requests by Sysg or int. TruGW restricts
access to ConfigService to internal clients, which blocks ext.

A09 Tampering with Config Session (SR6). Sysgw and int. can-
not tamper with connections between trusted admins and Config-
Service, because they are TLS-protected and end in Tp.

A10: ConfigService Spoofing (SR6). Neither Sysg.,, nor int., nor
web can impersonate ConfigService, because admins securely pin
its server certificate (Ccpy) for the trusted web address (cf. §5.4).
Furthermore, admins distribute Up service certificates only for un-
trusted addresses (cf. §5.5).

A11: CSRF against ConfigService (SR6). TruGW prevents web
attackers from launching CSRF attacks against admins of Config-
Service by requiring custom HTTP request headers [3] (cf. §5.4)
which are only settable from the same web origin. As ConfigService
has a trusted web domain (or IP) and thus different origin than Up
services (cf. §4.3), Sysgy, cannot launch CSRF either.

A12: ConfigService Resource Tampering (SR6). Sysg,, cannot tam-
per with ConfigService’s root HTML or Up-hosted web resources,
because ConfigService uses secure hashing and subresource in-
tegrity (SRI) to check their integrity on load (cf. §5.4).

A13: Admin/Master Compromise (SR6). While we assume the
master, admins, and their systems as trusted (cf. §2.1), we now dis-
cuss the implications of a full compromise of their systems. Sys,qm
cannot steal the admin private key Ka_dlm if it has been securely
generated and stored in a TPM. However, Sys,4,, can use the ad-
min credentials to maliciously reconfigure TruGW’s trusted poli-
cies via ConfigService. If such a breach is detected, the master

10

must immediately revoke C,g4,,. To prevent such an attack, TruGW
can deploy orthogonal solutions on the admin-side, which estab-
lish a secure I/O channel between the admin and a TEE-protected
browser [19, 24] and enforce their use for ConfigService access [57].
That way, Sys;qm can neither steal K;{;m nor use it. The situation

is similar for Sys;s;, however, on a master key breach K;lit a full
enrollment reset is required (cf. §5.4). On re-enrollment, the master
requires a clean system to prevent hijacking attempts by Sysps;.

A14: Covert Channels (Headers, Timing). TruGW’s current focus
is not on an active prevention of covert channels. However, TruGW
could adopt existing techniques to contain or prevent covert chan-
nels. For instance, TruGW could heavily filter all packet headers
(incl. Up’s) to remove storage channels [65], deploy client-side so-
lutions for protected traffic tunnels to TruGW to entirely strip
untrusted headers by int. [57], or adopt time masking schemes to
prevent timing channels by int. and ext. [6]. As TruGW currently
relies on Up for scheduling (cf. Section 5.1), Sysgw controls the
scheduler and can exploit it for additional timing channels. TruGW
could prevent them by switching to a Tp-controlled scheduler [42].

6.2 Real World Vulnerabilities

Recent CVEs in network gateways have raised serious security
concerns and motivated our design of TruGW. We now asses how
TruGW addresses these real world vulnerabilities. As discussed in
Section 2, critical CVEs of network gateways mainly lurk in auxil-
iary services, e.g., SNMP or web interfaces, and system components
unrelated to core network functionalities (Table 3 + 6, Appendix).
They enable remote attackers full control over the system, i.e., at-
tackers effectively gain the privileges of Sysgy,, e.g., via a remote
code execution. By design, TruGW contains exactly these types
of services and system components in Up and securely isolates
the core network functionalities (incl. firewall) in Tp against Sysgy.
Therefore, TruGW successfully protects gateways against recent
attacks.

TruGW’s security can only be undermined if vulnerabilities lurk
in the remaining attack surface within Tp services themselves. How-
ever, TruGW only includes core network services in Tp (e.g., firewall,

TrustedGateway: TEE-Assisted Routing and Firewall Enforcement Using ARM TrustZone

NIC drivers), which have faced very few CVEs, especially compared
to commodity OSes (cf. Section 2). Furthermore, our current TruGW
T}; prototype (cf. §7.1) only has ~110 kLOCs, whereas 12 popular
auxiliary services of DD-WRT routers already include an attack sur-
face which is one order of magnitude larger (~4517 kLOCs, cf. Ta-
ble 4 in Appendix). Commodity Up OSes are even larger and have
faced 2-3 orders of magnitudes more CVEs than OP-TEE OS, which
faced only =10 CVEs (cf. Table 3, Appendix). Therefore, TruGW
drastically decreases the TCB size of commodity routers and thus
risk of critical vulnerabilities.

7 EVALUATION

We now describe our prototype implementation and evaluate it in
terms of code size (TCB), performance, and memory overhead.

7.1 Open-source Prototype

We implemented an open-source TruGW prototype® on a Nitro-
gen6X development board [16] with an i.MX6Q ARM CPU (32bit, 4
cores), 2 GB RAM, and the Gbps Freescale Fast Ethernet Controller
(FEC) as our secure NIC. FEC is known to be technically limited to
~470 Mbps maximum (cf. errata 004512), and indeed showed only
~400 Mbps for ingoing/outgoing traffic in a vanilla setting in our
experiments. However, we nevertheless chose this board due to
its Ethernet support and as its TrustZone support was well docu-
mented and successfully used in research projects by others [33].
We run Debian 10 with a 4.14 Linux kernel® as untrusted Up OS
and OP-TEE 3.8.0 [40] as the secure Tp OS. We use U-Boot 2018.07
as the (trusted) bootloader®.

To implement NetTrug’s ARP, routing, and NPF integration, we
ported NPF-Router [53] to OP-TEE and significantly extended it
with trusted workers (incl. notifier), device driver callbacks, packet
buffers and queues, and VNIC support. NetTrug’s worker registra-
tion interface (cf. Section 5.1) is exposed to Up via OP-TEE’s TA
client API. We have implemented VNIC mostly from scratch, but
use the vqueue implementation of Trusty OS [42] for the I/O rings.
T4y follows the Linux FEC driver and registers a separate Rx and Tx
worker on NetTrug for increased performance. We integrated T,
into NetTrug’s driver framework and enabled interrupt sharing
with Uy, (cf. §5.2.1). For trapping and decoding Up NIC and VNIC
access faults, we have extended and integrated parts of SeCloak [33]
into OP-TEE and NetTrug.

ConfigService is implemented as an OP-TEE trusted application
(TA). We use the tiny picohttpparser [46] for HT TP parsing and a
small subset of mbedTLS for TLS. The untrusted SockHelper is a
small C program which handles the TCP server sockets and calls
into ConfigService via OP-TEE’s TA API SockHelper exchanges
TLS records with ConfigService using a new ringbuffer based on
OP-TEE’s shared memory API ConfigService’s web application
is a simple web page which communicates via GET and POST
XMLHttpRequests with ConfigService and uses our Wasm port of
NPF’s client tool for the firewall policy parsing (cf. Section 5.4).

SPrototype available at: https://github.com/trugw
Swe use the imx6 forks provided by the board vendor (Boundary Devices)

11

a. Router RX TrustedGateway b. For-
and TX warding
Host Host

........... e

TCP connection

iPerf3]€

Figure 4: Throughput evaluation setup. a. Throughput be-
tween an untrusted gateway router service and an internal
host (both directions). b. Forwarding throughput.

7.2 Code Size Analysis

We now analyse to what extent TruGW’s components increase the
TCB size compared to vanilla OP-TEE. We measured the LOCs of
OP-TEE’s and TruGW’s trusted kernel components using cloc [15].
As OP-TEE and NPF choose files depending on the platform con-
figuration, we only counted the actually included source/header
files. OP-TEE’s core has ~52 k LOCs plus ~24, 4 k for its crypto
library LibTomCrypt [36]. TruGW adds ~8.4 k LOCs for NetTrug,
VNIC, T, and device access trapping combined plus ~25.1 k for
the NPF firewall with all its libraries. That means, TruGW’s core
increases OP-TEE’s core only by ~16% and the addition of NPF is
roughly on a par with OP-TEE’s crypto library (SR7). Moreover,
NPF makes up ~75% of the current TruGW code base, and there is
a substantial shrinking potential as NPF’s design is not tailored to
TrustZone. ConfigService adds only ~2.1 k LOCs to T, plus a sub-
set of mbedTLS. Altogether, TruGW has a reasonably small impact
on OP-TEE’s TCB size and significantly decreases the overall attack
surface compared to commodity Up OSes and services (cf. §6.2).

7.3 Performance Evaluation

We now report on the network performance of TruGW. We evalu-
ate (i) the network throughput of TruGW, (ii) the overhead of its
firewall, (iii) TruGW’s impact on network latency, and (iv) the page
load time of ConfigService. To this end, we interconnected TruGW
with two client hosts using a 5-port gigabit switch. The first host
(Hostpy) is a Macbook Pro (Mac) with an Apple Thunderbolt-to-
Gigabit Ethernet Adapter. The second host (Hosty) is an HP Z1
workstation with an Intel 1219-LM NIC running Ubuntu. Each host
is in a separate IP subnetwork and configured to use TruGW as its
default gateway, s.t. all traffic is forwarded through TruGW.

7.3.1 Network Throughput. We use iPerf3 [22] to evaluate the TCP
network throughput of TruGW in three ways: (i) the downlink
of an untrusted router service (“Router RX”, e.g., file upload to a
local file server on the gateway) and (ii) uplink throughput of an
untrusted router service (“Router TX”, e.g., file download from the
gateway’s file server), and (iii) the client throughput when routing
all traffic through TruGW (“Forwarding”). iPerf3 sends TCP traffic
via a single connection to another iPerf3 instance and measures
the resulting throughput performance over 10 s. Figure 4 illustrates
our test cases and corresponding network flows. For (i) and (ii),
iPerf3 runs on one client host and as an untrusted router service
in TruGW’s Up. TruGW serves as the (i) receiver and (ii) sender
respectively. For (iii), we run iPerf3 on both client hosts and consider
both sending directions. We compare TruGW to the plain Linux

https://github.com/trugw

B TruGW (t) T vanilla (v)

500 Ro:xter RX 500 Router TX 500 Forwarding
g — —_
400 e 400 | . 400
=i T = e
= v p v
+ 300 300 300
=
& =
& 200 200 200 [t
=]
o
E 100 100 100
=
0 0 0
Mac Linux Mac Linux M—L L—M

Sending host Receiving host Connect. dirct
Figure 5: iPerf3 TCP throughput when the TruGW gateway
router is used as a receiver (left), sender (middle), and for-

warder (right); each for two clients (Mac/Linux).

setup of the Nitrogen6X board without TrustZone as the baseline
(“vanilla”). We disable NIC offloading features as our current driver
implementation does not yet support them and map device registers
uncached due to OP-TEE’s limited mapping support [33]. For both
setups, we perform 20 iterations for each test case.

Figure 5 shows the performance results for all six tests. (i) TruGW
reaches a receive throughput of about 385 Mbps, which is about 90%
of the vanilla throughput. The observed overhead is likely caused by
the current implementation of VNIC’s Up interface (Virtio-mmio).
VNIC currently uses (legacy) interrupts for buffer notifications to
Up (and access traps in the opposite direction) which can frequently
interrupt the Up iPerf3 thread. We could further improve the results
by refining VNIC’s batch processing, but we regard the performance
hit as acceptable for rare bulk uploads to router services. (ii) TruGW
reaches a transmission throughput of 392 Mbps for Hostys, which
is about 6.5% higher than that of vanilla (368 Mbps avg.). For Host,
TruGW reaches 99% of vanilla’s average throughput (369 Mbps).
While TruGW’s throughput to Hostys is currently higher than
vanilla, we have observed comparable maximum throughput val-
ues for Hosty and vanilla, too. VNIC currently performs aggressive
packet forwarding retries on a NIC congestion, which seem to ben-
efit from Hostps’s ACK sending behaviour. (iii) Lastly, TruGW’s
forwarding performance reaches 92.6-93.8% (236 Mbps avg.) of the
vanilla throughput when Hostys is the sender and 101.9-103.5%
(221 Mbps avg.) when Host) is the receiver. In summary, TruGW
shows an overall high throughput > 90% (AR4) and performs similar
to the vanilla system (92.6-103.5%) when forwarding.

7.3.2 Firewall Overhead. We now measure if adding NPF firewall
rules causes overhead. We repeated the three iPerf3 measurements
with Hostps while applying filter rules, i.e., the “Mac Router RX/TX”
and the “M — L” benchmarks of Figure 5. For RX/TX, we defined
rules on the VNIC interface, which check for TCP connections to
TruGW’s IP on iPerf3’s port. For forwarding, we defined analo-
gous rules on the NIC interface to match iPerf3’s connections to
Hosty . We performed 20 iterations of each test with (a) stateful rules
(connection tracking) and (b) bidirectional, stateless rules.

We observed a small overhead of about 0.5 to 1% in each test.
This is not surprising, because NPF enforces rules using just-in-
time compiled BPF code and has a fast path for connection tracking,

12

Fabian Schwarz

which enables efficient allowlisting policies. While the overhead
will naturally increase with large rulesets, the observed overhead
comes from NPF’s static code. As long as stateful policies capture
most of the traffic—which is the norm for most networks—the
overhead is thus marginal.

7.3.3 Latency Overhead. We now evaluate how TruGW affects
latency during web browsing and on a per-packet basis.

Web browsing. To follow a typical user scenario, we measure
the client-side load times of web pages. We selected the ten stable
pages from the top 13 of the Tranco list [32] for the evaluation.
We excluded “tmall.com” and “qq.com” as they blocked the page
load or faced a high baseline variance (multiple seconds) and “win-
dowsupdate.com” as Chrome refused to load it. For each page, we
measured the average load times over 10 iterations from Hostys
using a Chrome extension [62]. We kept all DNS entries cached,
but cleared the web caches after each page load. We compare the
baseline without TruGW (using a home router as Hosty,’s direct
gateway to a ~60 Mbps line) to a setup with TruGW as an additional
intermediate router between them.

TruGW incurs an average load time overhead of ~3.4% reaching
from 0.07% to 4.95% peak. The latency is low when most packets
arrive while TruGW’s I/O workers are still polling, and is slightly
higher when TruGW’s notifier must wake them up (cf. §5.1). The
workers partially compensate this by having an idle grace period
before entering the sleep state. We regard the observed average
overhead as reasonably small. Most of the overheads translate to
page load delays of about 30 ms (cf. Table 5, Appendix), which is
not noticeable by average users.

Packet Latency. To gauge how latency-critical applications (e.g.,
gaming) are affected by TruGW, we also evaluate the per-packet
latency using ping. We measure the average round trip time (RTT)
from Hostys to an external server for 1000 packets over 10 iterations.
We use the same baseline as in the page load test. TruGW shows an
average RTT of 14.22 ms, which is a tiny per-packet slowdown of
~0.37 ms (*2.67 %) compared to the average baseline of 13.85 ms.

7.3.4 Trusted ConfigService Load. We now briefly report on the
page load time of ConfigService’s master admin page. We follow the
approach of the previous section (§7.3.3). The load time includes
the server and client TLS authentication and the fetching of all
ConfigService web resources. We have observed an average load
time of about 1385 ms, which fulfills current user expectations of
1-2 seconds [63]. We can further optimize ConfigService if required.

7.4 Secure Memory Overhead

Since routers are usually resource-constrained devices, we now
discuss the secure memory overhead of TruGW. TruGW currently
shares OP-TEE’s default configuration and claims 30 MB of the
system RAM exclusively for the trusted partition Tp and 2 MB for
shared memory. VNIC additionally claims 268 B for its virtual de-
vice registers [47]. These memory requirements are easily met by
commodity router platforms. For instance, OpenWrt [5] recom-
mends > 128 MB of RAM for routers, which is fulfilled by the
majority of its supported ARM devices.” In addition, the TruGW

7https://openwrt.org/toh/views/toh_available_16128

https://openwrt.org/toh/views/toh_available_16128

TrustedGateway: TEE-Assisted Routing and Firewall Enforcement Using ARM TrustZone

prototype currently leaves ~20 MB of the 32 MB for trusted user
apps, such that we could further reduce TruGW’s memory require-
ments, likely to ~16 MB. The exact memory demand depends on
the number of NICs and their I/O buffer sizes. For instance, the FEC
NIC uses two rings a 512 entries for Ethernet frames (x1.5 MB).
However, TruGW relocates NIC I/O buffers, egress queues, and
firewall states from Up to Tp, i.e., they do not increase the overall
system demands.

ConfigService has a small memory footprint inside the TA mem-
ory. The demands are defined by the per-client TLS ringbuffers
(~4 kB), HTTP buffers (~4 kB), and internal TLS buffers (~3.6-
32 kB). The TLS admin certificates and the HTML file are securely
stored on disk. Other web resources are offloaded to Up (cf. §5.4).

8 CONCLUSION

The increasing attack surface introduced by commodity gateway
OSes and auxiliary services enables remote attackers to easily com-
promise gateway routers and bypass their security-critical network
policies. Unfortunately, network infrastructures still widely rely on
the assumption that gateways are trusted (“bastion hosts”). Existing
ad-hoc protection attempts result in large attack surfaces or are not
suitable for the protection of stand-alone consumer and SME gate-
ways. TruGW bridges this important gap by guaranteeing trusted
policy enforcement with a small attack surface even on a fully
compromised gateway. TruGW’s design builds on widely-available
hardware and software features (e.g., TrustZone, Virtio) to enable
an affordable and readily deployable secure gateway architecture.
TruGW thus restores the trust in the security of gateway routers.

REFERENCES

[1] Devdatta Akhawe, Joel Weinberger, Frederik Braun, and Francois
Marier. 2016. Subresource Integrity. W3C Recommendation. W3C.
https://www.w3.0rg/TR/2016/REC-SRI-20160623/.

[2] Daniele Enrico Asoni, Takayuki Sasaki, and Adrian Perrig. 2018. Alcatraz: Data
Exfiltration-Resilient Corporate Network Architecture. In 2018 IEEE 4th Inter-
national Conference on Collaboration and Internet Computing (CIC). 176-187.
https://doi.org/10.1109/CIC.2018.00033

[3] Adam Barth, Collin Jackson, and John C. Mitchell. 2008. Robust Defenses
for Cross-Site Request Forgery. In Proceedings of the 15th ACM Conference on
Computer and Communications Security (Alexandria, Virginia, USA) (CCS "08).
Association for Computing Machinery, New York, NY, USA, 75-88. https:
//doi.org/10.1145/1455770.1455782

[4] Paul Beesley, Sumit Garg, and Sandrine Bailleux. 2020. Trusted Board Boot.
Retrieved June 29, 2022 from https://github.com/ARM-software/arm- trusted-
firmware/blob/master/docs/design/trusted-board-boot.rst

[5] Rich Brown. 2022. Welcome to the OpenWrt Project. https://openwrt.org/

[6] Serdar Cabuk, Carla E. Brodley, and Clay Shields. 2004. IP Covert Timing
Channels: Design and Detection. In Proceedings of the 11th ACM Conference
on Computer and Communications Security (Washington DC, USA) (CCS 04).
Association for Computing Machinery, New York, NY, USA, 178-187. https:
//doi.org/10.1145/1030083.1030108

[7] Matteo Carlini. 2017. Secure Boot on Arm systems. Retrieved June 29,
2022 from https://www.slideshare.net/linaroorg/secure-boot-on-arm-systems-
building-a- complete-chain- of-trust-upon- existing-industry-standards- using-
opensource-firmware-sfo17201

[8] Yuegiang Cheng and Xuhua Ding. 2013. Guardian: Hypervisor as Security
Foothold for Personal Computers. In Trust and Trustworthy Computing, Michael
Huth, N. Asokan, Srdjan Capkun, Ivan Flechais, and Lizzie Coles-Kemp (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 19-36.

[9] Inc. Cisco Systems. 2015. Cisco I0S XR Software Release 6.0 Oper-

ational Enhancements Data Sheet. Retrieved March 2, 2022 from

https://www.cisco.com/c/en/us/products/collateral/ios-nx- os-software/ios-xr-
software/datasheet-c78-736154.html

Inc. Cisco Systems. 2020. KVM App Hosting on a Cisco Router. Retrieved June

27, 2022 from https://www.cisco.com/c/en/us/products/collateral/routers/4000-

series-integrated- services-routers-isr/at-a-glance-c45-737753.html

[10]

13

(1]

[12

[13

(14]

jprany
o

(17]

jpunpuny
)

[22]

[23

[24]

[25]

[27

(28]

[29

(31]

[32

[33

[35

[36

Inc. Cisco Systems. 2021. Troubleshoot High CPU Usage in Cata-
lyst Switch Platforms Running I0S-XE 16.x. Retrieved March 2, 2022
from https://www.cisco.com/c/en/us/support/docs/ios-nx-os-software/ios-xe-
16/213549-troubleshoot-high-cpu-usage-in-catalyst.html

Emscripten Contributors. 2022. Emscripten documentation. https://emscripten.
org

Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. 2005. Linux
Device Drivers, 3rd Edition. O’Reilly Media, Inc.

Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. Cryptology
ePrint Archive, Paper 2016/086. https://eprint.iacr.org/2016/086

Al Danial. 2022. cloc: Count Lines of Code. https://github.com/AlDanial/cloc
Boundary Devices. 2022. i.MX6 Embedded Single Board Computer (Nitrogen6X).
Retrieved June 29, 2022 from https://boundarydevices.com/product/nitrogen6x/
Huayi Duan, Cong Wang, Xingliang Yuan, Yajin Zhou, Qian Wang, and Kui Ren.
2019. LightBox: Full-Stack Protected Stateful Middlebox at Lightning Speed. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security (London, United Kingdom) (CCS ’19). Association for Computing Machin-
ery, New York, NY, USA, 2351-2367. https://doi.org/10.1145/3319535.3339814
embeDD GmbH. 2022. DD-WRT. https://dd-wrt.com/

Saba Eskandarian, Jonathan Cogan, Sawyer Birnbaum, Peh Chang Wei Brandon,
Dillon Franke, Forest Fraser, Gaspar Garcia, Eric Gong, Hung T. Nguyen, Taresh K.
Sethi, Vishal Subbiah, Michael Backes, Giancarlo Pellegrino, and Dan Boneh.
2019. Fidelius: Protecting User Secrets from Compromised Browsers. In 2019
IEEE Symposium on Security and Privacy (SP). 264-280. https://doi.org/10.1109/
SP.2019.00036

The Linux Foundation. 2022. Xen Project. https://xenproject.org/

Sanam Ghorbani Lyastani, Michael Schilling, Michaela Neumayr, Michael Backes,
and Sven Bugiel. 2020. Is FIDO2 the Kingslayer of User Authentication? A
Comparative Usability Study of FIDO2 Passwordless Authentication. In 2020
IEEE Symposium on Security and Privacy (SP). 268-285. https://doi.org/10.1109/
SP40000.2020.00047

Vivien Gueant. 2022. iPerf - The TCP, UDP and SCTP network bandwidth mea-
surement tool. https://iperf.fr/

Global Platform Inc. 2010. TEE Client API Specification v1.0. Retrieved June 29,
2022 from https://globalplatform.org/specs-library/tee-client-api-specification/
Yeongjin Jang. 2017. Building trust in the user I/O in computer systems. Ph.D.
Dissertation. Atlanta, GA, USA.

Inc. Juniper Networks. 2022. Junos OS Evolved Overview. Retrieved June 27, 2022
from https://www.juniper.net/documentation/us/en/software/junos/overview-
evo/topics/concept/evo-overview.html

Inc. Juniper Networks. 2022. Junos OS Overview. Retrieved June 27,
2022 from https://www.juniper.net/documentation/us/en/software/junos/junos-
install-upgrade/topics/topic-map/junos-os-overview.html

Inc. Juniper Networks. 2022. VM Host Overview (Junos OS). Retrieved June 27,
2022 from https://www.juniper.net/documentation/us/en/software/junos/junos-
install-upgrade/topics/topic-map/vm-host-overview.html

Qiao Kang, Lei Xue, Adam Morrison, Yuxin Tang, Ang Chen, and Xiapu Luo. 2020.
Programmable In-Network Security for Context-aware BYOD Policies. In 29th
USENIX Security Symposium (USENIX Security 20). USENIX Association, 595-612.
https://www.usenix.org/conference/usenixsecurity20/presentation/kang

The kernel development community. 2021. Interrupts — The Linux Kernel docu-
mentation. Retrieved April 4, 2022 from https://linux-kernel-labs.github.io/refs/
heads/master/lectures/interrupts.html#interrupt-context

Michael Kerrisk. 2012. ip-route(8) - Linux manual page. https://man7.org/linux/
man-pages/mang/ip-route.8.html

Se Won Kim, Chiyoung Lee, MooWoong Jeon, Hae Young Kwon, Hyun Woo
Lee, and Chuck Yoo. 2013. Secure device access for automotive software. In
2013 International Conference on Connected Vehicles and Expo (ICCVE). 177-181.
https://doi.org/10.1109/ICCVE.2013.6799789

Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej Ko-
rezynski, and Wouter Joosen. 2019. Tranco: A Research-Oriented Top Sites
Ranking Hardened Against Manipulation. In Proceedings of the 26th Annual
Network and Distributed System Security Symposium (NDSS 2019). https:
//doi.org/10.14722/ndss.2019.23386

Matthew Lentz, Rijurekha Sen, Peter Druschel, and Bobby Bhattacharjee. 2018.
SeCloak: ARM Trustzone-Based Mobile Peripheral Control. In Proceedings of the
16th Annual International Conference on Mobile Systems, Applications, and Services
(Munich, Germany) (MobiSys ’18). Association for Computing Machinery, New
York, NY, USA, 1-13. https://doi.org/10.1145/3210240.3210334

Thomas Leonard. 2022. QubesOS Mirage Firewall. Retrieved June 29, 2022 from
https://github.com/mirage/qubes-mirage-firewall/

Wenhao Li, Mingyang Ma, Jinchen Han, Yubin Xia, Binyu Zang, Cheng-Kang
Chu, and Tieyan Li. 2014. Building Trusted Path on Untrusted Device Drivers for
Mobile Devices. In Proceedings of 5th Asia-Pacific Workshop on Systems (Beijing,
China) (APSys ’14). Association for Computing Machinery, New York, NY, USA,
Article 8, 7 pages. https://doi.org/10.1145/2637166.2637225

Team libtom. 2022. LibTomCrypt. https://github.com/libtom/libtomcrypt

https://doi.org/10.1109/CIC.2018.00033
https://doi.org/10.1145/1455770.1455782
https://doi.org/10.1145/1455770.1455782
https://github.com/ARM-software/arm-trusted-firmware/blob/master/docs/design/trusted-board-boot.rst
https://github.com/ARM-software/arm-trusted-firmware/blob/master/docs/design/trusted-board-boot.rst
https://openwrt.org/
https://doi.org/10.1145/1030083.1030108
https://doi.org/10.1145/1030083.1030108
https://www.slideshare.net/linaroorg/secure-boot-on-arm-systems-building-a-complete-chain-of-trust-upon-existing-industry-standards-using-opensource-firmware-sfo17201
https://www.slideshare.net/linaroorg/secure-boot-on-arm-systems-building-a-complete-chain-of-trust-upon-existing-industry-standards-using-opensource-firmware-sfo17201
https://www.slideshare.net/linaroorg/secure-boot-on-arm-systems-building-a-complete-chain-of-trust-upon-existing-industry-standards-using-opensource-firmware-sfo17201
https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-xr-software/datasheet-c78-736154.html
https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-xr-software/datasheet-c78-736154.html
https://www.cisco.com/c/en/us/products/collateral/routers/4000-series-integrated-services-routers-isr/at-a-glance-c45-737753.html
https://www.cisco.com/c/en/us/products/collateral/routers/4000-series-integrated-services-routers-isr/at-a-glance-c45-737753.html
https://www.cisco.com/c/en/us/support/docs/ios-nx-os-software/ios-xe-16/213549-troubleshoot-high-cpu-usage-in-catalyst.html
https://www.cisco.com/c/en/us/support/docs/ios-nx-os-software/ios-xe-16/213549-troubleshoot-high-cpu-usage-in-catalyst.html
https://emscripten.org
https://emscripten.org
https://eprint.iacr.org/2016/086
https://github.com/AlDanial/cloc
https://boundarydevices.com/product/nitrogen6x/
https://doi.org/10.1145/3319535.3339814
https://dd-wrt.com/
https://doi.org/10.1109/SP.2019.00036
https://doi.org/10.1109/SP.2019.00036
https://xenproject.org/
https://doi.org/10.1109/SP40000.2020.00047
https://doi.org/10.1109/SP40000.2020.00047
https://iperf.fr/
https://globalplatform.org/specs-library/tee-client-api-specification/
https://www.juniper.net/documentation/us/en/software/junos/overview-evo/topics/concept/evo-overview.html
https://www.juniper.net/documentation/us/en/software/junos/overview-evo/topics/concept/evo-overview.html
https://www.juniper.net/documentation/us/en/software/junos/junos-install-upgrade/topics/topic-map/junos-os-overview.html
https://www.juniper.net/documentation/us/en/software/junos/junos-install-upgrade/topics/topic-map/junos-os-overview.html
https://www.juniper.net/documentation/us/en/software/junos/junos-install-upgrade/topics/topic-map/vm-host-overview.html
https://www.juniper.net/documentation/us/en/software/junos/junos-install-upgrade/topics/topic-map/vm-host-overview.html
https://www.usenix.org/conference/usenixsecurity20/presentation/kang
https://linux-kernel-labs.github.io/refs/heads/master/lectures/interrupts.html#interrupt-context
https://linux-kernel-labs.github.io/refs/heads/master/lectures/interrupts.html#interrupt-context
https://man7.org/linux/man-pages/man8/ip-route.8.html
https://man7.org/linux/man-pages/man8/ip-route.8.html
https://doi.org/10.1109/ICCVE.2013.6799789
https://doi.org/10.14722/ndss.2019.23386
https://doi.org/10.14722/ndss.2019.23386
https://doi.org/10.1145/3210240.3210334
https://github.com/mirage/qubes-mirage-firewall/
https://doi.org/10.1145/2637166.2637225
https://github.com/libtom/libtomcrypt

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]
[53]
[54]

[55]

[56]

Arm Limited. 2018. Trusted Board Boot Requirements CLIENT (TBBR-
CLIENT) Armv8-A. Retrieved April 4, 2022 from https://developer.arm.com/
documentation/den0006/latest

Arm Limited. 2019. Arm Platform Security Architecture Trusted Boot and
Firmware Update 1.0. Retrieved June 29, 2022 from https://developer.arm.com/-
/media/Arm%20Developer%20Community/PDF/PSA/DEN0072-PSA_TBFU_1-
0-REL.pdf

Linaro Limited. 2022. DeviceTree. https://www.devicetree.org

Linaro Limited. 2022. Open Portable Trusted Execution Environment - OP-TEE.
https://www.op-tee.org/

Renju Liu and Mani Srivastava. 2017. PROTC: PROTeCting Drone’s Peripherals
through ARM TrustZone. In Proceedings of the 3rd Workshop on Micro Aerial
Vehicle Networks, Systems, and Applications (Niagara Falls, New York, USA)
(DroNet °17). Association for Computing Machinery, New York, NY, USA, 1-6.
https://doi.org/10.1145/3086439.3086443

Google LLC. 2020. Trusty TEE | Android Open Source Project. Retrieved June 29,
2022 from https://source.android.com/security/trusty

Google LLC. 2022. chrome.enterprise.platformKeys — Chrome Developers. Re-
trieved June 29, 2022 from https://developer.chrome.com/docs/extensions/
reference/enterprise_platformKeys/

Google LLC. 2022. Hardware-backed Keystore | Android Open Source Project.
Retrieved June 29, 2022 from https://source.android.com/security/keystore
Matt McCormack, Amit Vasudevan, Guyue Liu, Sebastian Echeverria, Kyle
O’Meara, Grace Lewis, and Vyas Sekar. 2020. Towards an Architecture for
Trusted Edge IoT Security Gateways. In 3rd USENIX Workshop on Hot Topics in
Edge Computing (HotEdge 20). USENIX Association. https://www.usenix.org/
conference/hotedge20/presentation/meccormack

Kazuho Oku, Tokuhiro Matsuno, Daisuke Murase, and Shigeo Mitsunari. 2021.
PicoHTTPParser. https://github.com/h20/picohttpparser

OASIS Open. 2019. Virtual I/O Device (VIRTIO) Version 1.1, Michael S. Tsirkin
and Cornelia Huck (Eds.). OASIS Committee. Retrieved June 29, 2022 from
https://docs.oasis-open.org/virtio/virtio/v1.1/virtio-v1.1.html

Heejin Park, Shuang Zhai, Long Lu, and Felix Xiaozhu Lin. 2019. StreamBox-TZ:
Secure Stream Analytics at the Edge with TrustZone. In 2019 USENIX Annual
Technical Conference (USENIX ATC 19). USENIX Association, Renton, WA, 537-
554. https://www.usenix.org/conference/atc19/presentation/park-heejin
Sandro Pinto and Nuno Santos. 2019. Demystifying Arm TrustZone: A Com-
prehensive Survey. ACM Comput. Surv. 51, 6, Article 130 (jan 2019), 36 pages.
https://doi.org/10.1145/3291047

Rishabh Poddar, Chang Lan, Raluca Ada Popa, and Sylvia Ratnasamy. 2018.
SafeBricks: Shielding Network Functions in the Cloud. In 15th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 18). USENIX
Association, Renton, WA, 201-216. https://www.usenix.org/conference/nsdi18/
presentation/poddar

Salvatore Pontarelli, Roberto Bifulco, Marco Bonola, Carmelo Cascone, Marco
Spaziani, Valerio Bruschi, Davide Sanvito, Giuseppe Siracusano, Antonio Capone,
Michio Honda, Felipe Huici, and Giuseppe Siracusano. 2019. FlowBlaze: Stateful
Packet Processing in Hardware. In 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19). USENIX Association, Boston, MA, 531-548.
https://www.usenix.org/conference/nsdi19/presentation/pontarelli

The Qubes OS Project et al. 2022. Firewall | Qubes OS. Retrieved June 29, 2022
from https://www.qubes-o0s.org/doc/firewall/

Mindaugas Rasiukevicius. 2021. NPF-Router: a demo NPF+DPDK application.
https://github.com/rmind/npf/tree/master/app

Mindaugas Rasiukevicius. 2021. NPF: stateful packet filter supporting NAT, IP sets,
etc. https://github.com/rmind/npf

Sergej Schumilo, Cornelius Aschermann, Ali Abbasi, Simon Wor-ner, and
Thorsten Holz. 2021. Nyx: Greybox Hypervisor Fuzzing using Fast Snapshots and
Affine Types. In 30th USENIX Security Symposium (USENIX Security 21). USENIX
Association, 2597-2614. https://www.usenix.org/conference/usenixsecurity21/
presentation/schumilo

Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian Schinzel, and
Thorsten Holz. 2017. kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels.
In 26th USENIX Security Symposium (USENIX Security 17). USENIX Association,
Vancouver, BC, 167-182. https://www.usenix.org/conference/usenixsecurityl7/
technical-sessions/presentation/schumilo

Fabian Schwarz and Christian Rossow. 2020. SENG, the SGX-Enforcing Network
Gateway: Authorizing Communication from Shielded Clients. In 29th USENIX
Security Symposium (USENIX Security 20). USENIX Association, 753-770. https:
//www.usenix.org/conference/usenixsecurity20/presentation/schwarz

NXP Semiconductors. 2018. i.MX 6Dual/6Quad Applications Processors for Con-
sumer Products. Retrieved July 4, 2022 from https://www.nxp.com/docs/en/data-
sheet/IMX6DQCEC.pdf

Abhinav Srivastava and Jonathon Giffin. 2008. Tamper-Resistant, Application-
Aware Blocking of Malicious Network Connections. In Recent Advances in In-
trusion Detection, Richard Lippmann, Engin Kirda, and Ari Trachtenberg (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 39-58.

14

Fabian Schwarz

Stefan Luber and Andreas Donner. 2019. Was ist eine Fritzbox? Retrieved March
2, 2022 from https://www.ip-insider.de/was-ist-eine-fritzbox-a-883753/

SEG / DrayTek UK. 2015. O/S versions on Vigor 2760 Series Routers (DrayOS/Linux).
Retrieved March 2, 2022 from https://www.draytek.co.uk/support/guides/os-
versions-on-vigor-2760-series-routers

Alexander Vykhodtsev. 2021. page-load-time. https://github.com/alex-vv/page-
load-time

Anna Wilson. 2020. Website Load Time Statistics. Retrieved June 27, 2022 from
https://www.top10-websitehosting.co.uk/website-load- time-statistics/

Wei Wu, Yueqi Chen, Xinyu Xing, and Wei Zou. 2019. KEPLER: Facilitat-
ing Control-flow Hijacking Primitive Evaluation for Linux Kernel Vulnerabil-
ities. In 28th USENIX Security Symposium (USENIX Security 19). USENIX As-
sociation, Santa Clara, CA, 1187-1204. https://www.usenix.org/conference/
usenixsecurity19/presentation/wu-wei

Jiarong Xing, Qiao Kang, and Ang Chen. 2020. NetWarden: Mitigating Net-
work Covert Channels while Preserving Performance. In 29th USENIX Secu-
rity Symposium (USENIX Security 20). USENIX Association, 2039-2056. https:
//www.usenix.org/conference/usenixsecurity20/presentation/xing

Kailiang Ying, Amit Ahlawat, Bilal Alsharifi, Yuexin Jiang, Priyank Thavai, and
Wenliang Du. 2018. TruZ-Droid: Integrating TrustZone with Mobile Operating
System. In Proceedings of the 16th Annual International Conference on Mobile
Systems, Applications, and Services (Munich, Germany) (MobiSys ’18). Association
for Computing Machinery, New York, NY, USA, 14-27. https://doi.org/10.1145/
3210240.3210338

Zongwei Zhou, Virgil D. Gligor, James Newsome, and Jonathan M. McCune. 2012.
Building Verifiable Trusted Path on Commodity x86 Computers. In 2012 IEEE
Symposium on Security and Privacy. 616-630. https://doi.org/10.1109/SP.2012.42
Zongwei Zhou, Miao Yu, and Virgil D. Gligor. 2014. Dancing with Giants: Wimpy
Kernels for On-Demand Isolated I/O. In 2014 IEEE Symposium on Security and
Privacy. 308-323. https://doi.org/10.1109/SP.2014.27

Yong-Hao Zou, Jia-Ju Bai, Jielong Zhou, Jianfeng Tan, Chenggang Qin, and
Shi-Min Hu. 2021. TCP-Fuzz: Detecting Memory and Semantic Bugs in TCP
Stacks with Fuzzing. In 2021 USENIX Annual Technical Conference (USENIX ATC
21). USENIX Association, 489-502. https://www.usenix.org/conference/atc21/
presentation/zou

(60

[61

[62

(3]

[64]

(65

[66

(68

[69]

A ARM SECURE AND TRUSTED BOOT

ARM secure boot provides mechanisms to verify that only trusted
images are loaded during system boot. To realize this, the boot
images are signed and each loader verifies the image of the next
stage before transferring control to it. That way, secure boot es-
tablishes a chain of trust which is rooted in a trusted root signing
key. While the details are implementation-specific, the concepts
of secure boot are well known [4, 37]. They typically include: (i) a
trusted root key k;o; stored (typically by the manufacturer) in
tamper-proof non-volatile storage (e.g., OTP) inaccessible by sys-
tem software, (ii) a trusted boot ROM which uses kyo; to verify
the signature of the first stage bootloader image, and (iii) a set of
public key hashes used to verify subsequent boot images (e.g., TEE
image, Up bootloader) [4, 37]. The TrustZone-specific trusted board
boot [37] follows these principles to enable verification of the TEE
(Tp) image(s) and the Up bootloader. As TruGW’s trusted kernel
components (e.g., NetTrug) are direct extensions of OP-TEE’s TEE
image(s) (cf. §5.1 and §5.5), their integrity is securely verified on
boot and therefore guaranteed to be in a trusted state. Optionally,
TruGW can include all Up OS images in the secure boot chain, e.g.,
by combining trusted boot with UEFI secure boot [7].

B OP-TEE’S THREAD SCHEDULING

OP-TEE [40] is not in control of the CPU scheduling and relies on
the Linux scheduler for running secure tasks. Linux applications
must explicitly call into OP-TEE for service. This design suites OP-
TEE’s service-oriented design and principle of least privilege and
contributes to OP-TEE’s small TCB (SR7). OP-TEE implements the
GlobalPlatform TEE Client API [23] which enables applications

https://developer.arm.com/documentation/den0006/latest
https://developer.arm.com/documentation/den0006/latest
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/PSA/DEN0072-PSA_TBFU_1-0-REL.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/PSA/DEN0072-PSA_TBFU_1-0-REL.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/PSA/DEN0072-PSA_TBFU_1-0-REL.pdf
https://www.devicetree.org
https://www.op-tee.org/
https://doi.org/10.1145/3086439.3086443
https://source.android.com/security/trusty
https://developer.chrome.com/docs/extensions/reference/enterprise_platformKeys/
https://developer.chrome.com/docs/extensions/reference/enterprise_platformKeys/
https://source.android.com/security/keystore
https://www.usenix.org/conference/hotedge20/presentation/mccormack
https://www.usenix.org/conference/hotedge20/presentation/mccormack
https://github.com/h2o/picohttpparser
https://docs.oasis-open.org/virtio/virtio/v1.1/virtio-v1.1.html
https://www.usenix.org/conference/atc19/presentation/park-heejin
https://doi.org/10.1145/3291047
https://www.usenix.org/conference/nsdi18/presentation/poddar
https://www.usenix.org/conference/nsdi18/presentation/poddar
https://www.usenix.org/conference/nsdi19/presentation/pontarelli
https://www.qubes-os.org/doc/firewall/
https://github.com/rmind/npf/tree/master/app
https://github.com/rmind/npf
https://www.usenix.org/conference/usenixsecurity21/presentation/schumilo
https://www.usenix.org/conference/usenixsecurity21/presentation/schumilo
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schumilo
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schumilo
https://www.usenix.org/conference/usenixsecurity20/presentation/schwarz
https://www.usenix.org/conference/usenixsecurity20/presentation/schwarz
https://www.nxp.com/docs/en/data-sheet/IMX6DQCEC.pdf
https://www.nxp.com/docs/en/data-sheet/IMX6DQCEC.pdf
https://www.ip-insider.de/was-ist-eine-fritzbox-a-883753/
https://www.draytek.co.uk/support/guides/os-versions-on-vigor-2760-series-routers
https://www.draytek.co.uk/support/guides/os-versions-on-vigor-2760-series-routers
https://github.com/alex-vv/page-load-time
https://github.com/alex-vv/page-load-time
https://www.top10-websitehosting.co.uk/website-load-time-statistics/
https://www.usenix.org/conference/usenixsecurity19/presentation/wu-wei
https://www.usenix.org/conference/usenixsecurity19/presentation/wu-wei
https://www.usenix.org/conference/usenixsecurity20/presentation/xing
https://www.usenix.org/conference/usenixsecurity20/presentation/xing
https://doi.org/10.1145/3210240.3210338
https://doi.org/10.1145/3210240.3210338
https://doi.org/10.1109/SP.2012.42
https://doi.org/10.1109/SP.2014.27
https://www.usenix.org/conference/atc21/presentation/zou
https://www.usenix.org/conference/atc21/presentation/zou

TrustedGateway: TEE-Assisted Routing and Firewall Enforcement Using ARM TrustZone

Table 2: A sample of router network operating systems
(NOS) and the respective commodity OSes they derive from.
Many popular router NOSes are based on commodity OSes
and therefore inherit their security vulnerabilities. Note
that many “old”, hardware-specific NOSes nowadays run as
userspace services or VMs on recent platforms.

Vendor Network OS Underlying Commodity OS
AVM Fritz!OS Linux [60]

Cisco I0S XR Linux (Wind River), old: QNX [9]
Cisco 10S XE Linux [11]

DrayTek — Linux (now: DrayOS) [61]
Juniper Junos OS FreeBSD [26]

Juniper Junos OS Evolved Linux [25]

— DD-/OpenWRT Linux [5, 18]

Table 3: Number of CVE entries (2.3.22) for OSes, hypervi-
sors, and Linux networking components based on categories
of cvedetails.com and keyword searches on cve.mitre.org.
The CVEs show that (i) security kernels (e.g. OP-TEE) face a
way smaller risk of exploitation than commodity OSes used
by routers, and (ii) the Linux firewall and NIC drivers add
only minimally to the risk of code execution (CE) vulnera-
bilities compared to the full kernel or hypervisors. Note that
Xen and KVM require an additional host OS (e.g. Linux).

Product Total CVEs CE Search Keywords

Linux kernel 2763 263 —

Win. 10 OS 2590 538 —

FreeBSD OS 455 54 —

OP-TEE OS 10 3 —

Xen 378 20 —

QEMU (KVM) 355 77 —

Linux Firewall 67 linux netfilter

Eth. NIC Drv. 25 linux drivers net ethernet
Wireless Drv. 39 1 linux drivers net wireless

to create a session with an OP-TEE trusted application (TA) and
then invoke TA-exposed RPC interfaces. OP-TEE’s Linux driver and
secure kernel handle the resulting thread context switches between
Linux (in Up) and OP-TEE’s TAs (in Tp) based on TrustZone’s SMC
CPU instruction [49]. OP-TEE’s kernel stores the execution contexts
of the Linux threads in trusted TEE thread structures while they
perform TEE tasks. In Figure 3, the resulting control flow is shown
for TruGW’s SockHelper and ConfigService TA.

However, a design like OP-TEE’s causes high performance over-
head and limitations. Keeping the thread scheduler in Up signifi-
cantly increases the required number of expensive context switches
between Tp and Up on common tasks, e.g., thread synchronisation.
Furthermore, trusted Tp interrupt handlers cannot schedule TEE
tasks as the Up scheduling APIs used for TEE-associated threads are
context-switching and therefore incompatible with interrupt con-
texts [29]. For that reason, such scheduling designs (incl. OP-TEE’s)

15

Table 4: Code sizes of auxiliary network services on DD-WRT
routers (rev. 47201) in thousands of lines of code.

Lines of Code [KLOC]

Service Short Description Total C/ASM Hdrs
asterisk VoIP server 766.6 673.7 929
dropbear Sys Utils (incl. sshd) 95.3 87.5 7.8
freeradius3 Authentication service 116.1 109.6 6.5
krb5 Authentication service ~ 308.3 256.9 514
lighttpd Web server 82.9 715 114
minidlna Streaming server 691.0 553.3 137.7
nginx Web server 140.8 132.3 8.5
proftpd FTP daemon 227.7 220.9 6.8
samba4 File sharing server 1515.3 1431.8 83.5
snmp Sys/Net monitoring 288.2 2579 303
squid Web proxy 51.3 150 363
zabbix Sys/Net monitoring 233.5 2211 124
SUM 4517.0 40315 4855

Table 5: Overview of Chrome page load times and overhead
when routing through TruGW as an intermediate router.

avg. load [ms]

Web Page Baseline TruGW Overhead
instagram.com 1298.5 1362.8 4.95%
linkedin.com 654.0 685.8 4.86%
google.com 563.0 590.1 4.81%
youtube.com 560.8 587.2 4.71%
microsoft.com 823.1 856.3 4.03%
baidu.com 6642.9 6895.1 3.80%
facebook.com 813.2 843.6 3.74%
apple.com 963.8 993.0 3.03%
wikipedia.org 701.5 704.5 0.43%
twitter.com 1125.7 1126.5 0.07%

are unsuitable for fast, trusted network I/O as required by TruGW.
This motivated us to design TruGW’s new worker framework which
overcomes these limitations and enables efficient NIC 1/O in Tp
while keeping the scheduler in Up (cf. §5.1).

https://www.cvedetails.com
https://cve.mitre.org

Fabian Schwarz

Table 6: A sample of recent security critical vulnerabilities in auxiliary services, OS kernels, and hypervisors (VMM:s) used by
popular network devices. The CVEs show that remote attackers can fully compromise such devices by chaining remote code
execution exploits to OS and (if required) VMM exploits. Thus, attackers gain full control over a device’s routing and firewall.

CVE Device Target Component / Vulnerability = Attack Effect
2019-16028 Cisco Firepower Firewall LDAP Bypass (via HTTP) remote admin access
® 2019-17621 D-Link DIR-859 Wi-Fi router UPnP service (via HTTP) remote code execution (LAN)
E 2019-19494 Broadcom-based cable modems buffer overflow (via JS) remote kernel code execution
E 2020-3115 Cisco SD-WAN vManage (input validation error) local privilege escalation (root)
44 2020-11503 Sophos XG Firewall awarrensmtp (heap overflow) remote code execution
§ 2020-15635 Netgear WLAN Router R6700 acsd service (buffer overflow) remote code execution
E 2020-27600 D-Link Router DIR-846 HNAP service remote command execution
g 2021-0254 Juniper ACX/MX routers overlayd (buffer overflow) remote code execution
8, 2021-0260 Juniper net. devices (Junos OS) snmpd (improper authorization) remote SNMP read/write access
§ 2021-1287 Cisco Wireless VPN routers web mngt. interface remote code execution (root)
> 2021-1539 Cisco ASR-5000 routers TACACS auth. bypass (via SSH) remote command execution
2021-1602 Cisco RV160/260 Routers web mngt. interface remote code execution (root)
oy 2020-7460 FreeBSD-based Routers (Table 2) FreeBSD kernel local kernel code execution
O 2021-31440 Linux-based Routers (Table 2) Linux kernel 5.11.15 local kernel code execution
= 2020-7467 FreeBSD-based Routers (Table 2) bhyve (FreeBSD hypervisor) VM escape (host code exec.)
E 2020-14364 Linux-based Routers (Table 2) KVM-QEMU (Linux hypervisor) VM escape (host code exec.)

16

	Abstract
	1 Introduction
	2 Motivation
	2.1 Threat Model

	3 Towards Secure Network Gateways
	3.1 Goals and Requirements
	3.2 Design Tradeoffs and their Shortcomings

	4 TruGW's Design
	4.1 Trusted Networking
	4.2 Securely Sharing Network Access
	4.3 Trusted Policy Configuration

	5 TruGW Details and Implementation
	5.1 TEE Integration and Networking
	5.2 Trusted Network Device I/O
	5.3 Address Resolution and Assignment
	5.4 Trusted Policy Management
	5.5 Deployment

	6 Security Analysis
	6.1 Attacks and their Countermeasures
	6.2 Real World Vulnerabilities

	7 Evaluation
	7.1 Open-source Prototype
	7.2 Code Size Analysis
	7.3 Performance Evaluation
	7.4 Secure Memory Overhead

	8 Conclusion
	References
	A ARM Secure and Trusted Boot
	B OP-TEE's Thread Scheduling

